The Annals of Applied Probability

Knudsen gas in flat tire

Krzysztof Burdzy and Carl-Erik Gauthier

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider random reflections (according to the Lambertian distribution) of a light ray in a thin variable width (but almost circular) tube. As the width of the tube goes to zero, properly rescaled angular component of the light ray position converges in distribution to a diffusion whose parameters (diffusivity and drift) are given explicitly in terms of the tube width.

Article information

Source
Ann. Appl. Probab., Volume 29, Number 1 (2019), 217-263.

Dates
Received: January 2018
Revised: June 2018
First available in Project Euclid: 5 December 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1544000429

Digital Object Identifier
doi:10.1214/18-AAP1412

Mathematical Reviews number (MathSciNet)
MR3910004

Zentralblatt MATH identifier
07039125

Subjects
Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 37D50: Hyperbolic systems with singularities (billiards, etc.) 60G40: Stopping times; optimal stopping problems; gambling theory [See also 62L15, 91A60] 60G42: Martingales with discrete parameter 60G44: Martingales with continuous parameter 60J05: Discrete-time Markov processes on general state spaces 60J25: Continuous-time Markov processes on general state spaces

Keywords
Stochastic billiard invariance principle Knudsen random walk cosine distribution

Citation

Burdzy, Krzysztof; Gauthier, Carl-Erik. Knudsen gas in flat tire. Ann. Appl. Probab. 29 (2019), no. 1, 217--263. doi:10.1214/18-AAP1412. https://projecteuclid.org/euclid.aoap/1544000429


Export citation

References

  • [1] Angel, O., Burdzy, K. and Sheffield, S. (2013). Deterministic approximations of random reflectors. Trans. Amer. Math. Soc. 365 6367–6383.
  • [2] Bálint, P., Chernov, N. and Dolgopyat, D. (2011). Limit theorems for dispersing billiards with cusps. Comm. Math. Phys. 308 479–510.
  • [3] Burdzy, K. and Tadić, T. (2017). Can one make a laser out of cardboard? Ann. Appl. Probab. 27 1951–1991.
  • [4] Burdzy, K. and Tadić, T. (2018). Random reflections in a high-dimensional tube. J. Theoret. Probab. 31 466–493.
  • [5] Chumley, T., Feres, R. and Zhang, H.-K. (2016). Diffusivity in multiple scattering systems. Trans. Amer. Math. Soc. 368 109–148.
  • [6] Comets, F., Popov, S., Schütz, G. M. and Vachkovskaia, M. (2009). Billiards in a general domain with random reflections. Arch. Ration. Mech. Anal. 191 497–537.
  • [7] Comets, F., Popov, S., Schütz, G. M. and Vachkovskaia, M. (2010). Quenched invariance principle for the Knudsen stochastic billiard in a random tube. Ann. Probab. 38 1019–1061.
  • [8] Cook, S. and Feres, R. (2012). Random billiards with wall temperature and associated Markov chains. Nonlinearity 25 2503–2541.
  • [9] Dingle, K., Lamb, J. S. W. and Lázaro-Camí, J.-A. (2013). Knudsen’s law and random billiards in irrational triangles. Nonlinearity 26 369–388.
  • [10] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [11] Feres, R. (2007). Random walks derived from billiards. In Dynamics, Ergodic Theory, and Geometry. Math. Sci. Res. Inst. Publ. 54 179–222. Cambridge Univ. Press, Cambridge.
  • [12] Feres, R. and Yablonsky, G. (2004). Knudsen’s cosine law and random billiards. Chem. Eng. Sci. 59 1541–1556.
  • [13] Jerison, D. (2000). Locating the first nodal line in the Neumann problem. Trans. Amer. Math. Soc. 352 2301–2317.
  • [14] Katzenberger, G. S. (1991). Solutions of a stochastic differential equation forced onto a manifold by a large drift. Ann. Probab. 19 1587–1628.
  • [15] Knudsen, M. (1934). The Kinetic Theory of Gases: Some Modern Aspects. Methuen & Co., London.
  • [16] Lambert, J. H. (1760). Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard Klett.
  • [17] Lapidus, M. L. and Niemeyer, R. G. (2010). Towards the Koch snowflake fractal billiard: Computer experiments and mathematical conjectures. In Gems in Experimental Mathematics. Contemp. Math. 517 231–263. Amer. Math. Soc., Providence, RI.
  • [18] Lapidus, M. L. and Niemeyer, R. G. (2013). Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards. Discrete Contin. Dyn. Syst. 33 3719–3740.
  • [19] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, New York.
  • [20] Zaveri, S. (2006). The second eigenfunction of the Neumann Laplacian on thin domains. Ph.D. thesis, Univ. Washington, Seattle, WA.