The Annals of Applied Probability

Explicit solution of an inverse first-passage time problem for Lévy processes and counterparty credit risk

M. H. A. Davis and M. R. Pistorius

Full-text: Open access


For a given Markov process $X$ and survival function $\overline{H}$ on $\mathbb{R}^{+}$, the inverse first-passage time problem (IFPT) is to find a barrier function $b:\mathbb{R}^{+}\to[-\infty,+\infty]$ such that the survival function of the first-passage time $\tau_{b}=\inf\{t\ge0:X(t)<b(t)\}$ is given by $\overline{H}$. In this paper, we consider a version of the IFPT problem where the barrier is fixed at zero and the problem is to find an initial distribution $\mu$ and a time-change $I$ such that for the time-changed process $X\circ I$ the IFPT problem is solved by a constant barrier at the level zero. For any Lévy process $X$ satisfying an exponential moment condition, we derive the solution of this problem in terms of $\lambda$-invariant distributions of the process $X$ killed at the epoch of first entrance into the negative half-axis. We provide an explicit characterization of such distributions, which is a result of independent interest. For a given multi-variate survival function $\overline{H}$ of generalized frailty type, we construct subsequently an explicit solution to the corresponding IFPT with the barrier level fixed at zero. We apply these results to the valuation of financial contracts that are subject to counterparty credit risk.

Article information

Ann. Appl. Probab., Volume 25, Number 5 (2015), 2383-2415.

Received: June 2013
Revised: March 2014
First available in Project Euclid: 30 July 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J75: Jump processes 91G40: Credit risk
Secondary: 91G80: Financial applications of other theories (stochastic control, calculus of variations, PDE, SPDE, dynamical systems)

Inverse first-passage problem Lévy process quasi-invariant distribution credit risk counterparty risk multi-variate first-passage times


Davis, M. H. A.; Pistorius, M. R. Explicit solution of an inverse first-passage time problem for Lévy processes and counterparty credit risk. Ann. Appl. Probab. 25 (2015), no. 5, 2383--2415. doi:10.1214/14-AAP1051.

Export citation


  • [1] Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Probab. 15 2062–2080.
  • [2] Applebaum, D. (2004). Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93. Cambridge Univ. Press, Cambridge.
  • [3] Avellaneda, M. and Zhu, J. (2001). Modeling the distance-to-default of a firm. Risk 14 125–129.
  • [4] Bartholomew, D. J. (1969). Sufficient conditions for a mixture of exponentials to be a probability density function. Annals of Mathematical Statistics 40 2183–2188.
  • [5] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge.
  • [6] Black, F. and Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. J. Finance 31 315–376.
  • [7] Blanchet-Scalliet, C. and Patras, F. (2008). Counterparty risk valuation for CDS. Available at arXiv:0807.0309.
  • [8] Botta, R. F. and Harris, C. M. (1986). Approximation with generalized hyperexponential distributions: Weak convergence results. Queueing Systems Theory Appl. 1 169–190.
  • [9] Brigo, D. and Tarenghi, M. (2005). Credit default swap calibration and counterparty risk valuation with a scenario based first passage model. Available at
  • [10] Cesari, G., Aquilina, J., Charpillon, N., Filipović, Z., Lee, G. and Manda, I. (2009). Modelling, Pricing, and Hedging Counterparty Credit Exposure: A Technical Guide. Springer, Berlin.
  • [11] Chen, X., Cheng, L., Chadam, J. and Saunders, D. (2011). Existence and uniqueness of solutions to the inverse boundary crossing problem for diffusions. Ann. Appl. Probab. 21 1663–1693.
  • [12] Cheng, L., Chen, X., Chadam, J. and Saunders, D. (2006). Analysis of an inverse first passage problem from risk management. SIAM J. Math. Anal. 38 845–873.
  • [13] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL.
  • [14] Davis, M. H. A. and Pistorius, M. R. (2010). Quantification of counterparty risk via Bessel bridges. Available at
  • [15] Ettinger, B., Evans, S. N. and Hening, A. (2014). Killed Brownian motion with a prescribed lifetime distribution and models of default. Ann. Appl. Probab. 24 1–33.
  • [16] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York.
  • [17] Huang, H. and Tian, W. (2006). Constructing default boundaries. Bankers, Markets & Investors 80 21–28.
  • [18] Hull, J. and White, A. (2001). Valuing credit default swaps II: Default correlations. Journal of Derivatives 8 12–22.
  • [19] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin.
  • [20] Jaimungal, S., Kreinin, A. and Valov, A. (2009). Integral equations and the first passage time of Brownian motions. Available at arXiv:0902.2569.
  • [21] Jarrow, R. A. and Turnbull, S. (1995). Pricing derivatives on financial securities subject to credit risk. J. Finance 50 53–85.
  • [22] Johnson, H. and Stultz, R. (1987). The pricing of options with default risk. J. Finance 42 267–280.
  • [23] Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data, 2nd ed. Wiley, Hoboken, NJ.
  • [24] Kuznetsov, A. E. (2010). An analytical proof of the Pečerskiĭ–Rogozin identity and the Wiener–Hopf factorization. Theory Probab. Appl. 55 432–443.
  • [25] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.
  • [26] Lewis, A. L. and Mordecki, E. (2008). Wiener–Hopf factorization for Lévy processes having positive jumps with rational transforms. J. Appl. Probab. 45 118–134.
  • [27] Lipton, A. and Savescu, I. (2013). CDSs, CVA and DVA—a structural approach. Risk April 2013 56–61.
  • [28] Lipton, A. and Sepp, A. (2009). Credit value adjustment for credit default swaps via the structural default model. Journal of Credit Risk 5 123–146.
  • [29] Longstaff, F. and Schwartz, E. (1995). A simple approach to valuing risky fixed and floating rate debt. J. Finance 50 789–819.
  • [30] Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. J. Finance 29 449–470.
  • [31] Overbeck, L. and Schmidt, W. (2005). Modeling default dependence with threshold models. Journal of Derivatives 12 10–19.
  • [32] Pečerskiĭ, E. A. and Rogozin, B. A. (1969). The combined distributions of the random variables connected with the fluctuations of a process with independent increments. Teor. Veroyatn. Primen. 14 431–444.
  • [33] Peskir, G. (2002). On integral equations arising in the first-passage problem for Brownian motion. J. Integral Equations Appl. 14 397–423.
  • [34] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge.
  • [35] Song, J.-S. and Zipkin, P. (2011). An approximation for the inverse first passage time problem. Adv. in Appl. Probab. 43 264–275.
  • [36] Zucca, C. and Sacerdote, L. (2009). On the inverse first-passage-time problem for a Wiener process. Ann. Appl. Probab. 19 1319–1346.