Annals of Applied Probability

Supercritical percolation on large scale-free random trees

Jean Bertoin and Gerónimo Uribe Bravo

Full-text: Open access


We consider Bernoulli bond percolation on a large scale-free tree in the supercritical regime, meaning informally that there exists a giant cluster with high probability. We obtain a weak limit theorem for the sizes of the next largest clusters, extending a recent result in Bertoin [Random Structures Algorithms 44 (2014) 29–44] for large random recursive trees. The approach relies on the analysis of the asymptotic behavior of branching processes subject to rare neutral mutations, which may be of independent interest.

Article information

Ann. Appl. Probab., Volume 25, Number 1 (2015), 81-103.

First available in Project Euclid: 16 December 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J27: Continuous-time Markov processes on discrete state spaces 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Random tree preferential attachment percolation


Bertoin, Jean; Uribe Bravo, Gerónimo. Supercritical percolation on large scale-free random trees. Ann. Appl. Probab. 25 (2015), no. 1, 81--103. doi:10.1214/13-AAP988.

Export citation


  • Athreya, K. B., Ghosh, A. P. and Sethuraman, S. (2008). Growth of preferential attachment random graphs via continuous-time branching processes. Proc. Indian Acad. Sci. Math. Sci. 118 473–494.
  • Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York.
  • Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509–512.
  • Bertoin, J. (2010). A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process. Appl. 120 678–697.
  • Bertoin, J. (2014). Sizes of the largest clusters for supercritical percolation on random recursive trees. Random Structures Algorithms 44 29–44.
  • Bollobás, B. and Riordan, O. (2003). Robustness and vulnerability of scale-free random graphs. Internet Math. 1 1–35.
  • Chauvin, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Probab. 19 1195–1205.
  • Devroye, L. (1998). Branching processes and their applications in the analysis of tree structures and tree algorithms. In Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin. 16 249–314. Springer, Berlin.
  • Dorogovtsev, S. N., Mendes, J. F. F. and Samukhin, A. N. (2000). Structure of growing networks with preferential linking. Phys. Rev. Lett. 85 4633–4636.
  • Drmota, M. (2009). Random Trees: An Interplay between Combinatorics and Probability. Springer, Berlin.
  • Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Univ. Press, Cambridge.
  • Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Probab. 12 28–35.
  • Jagers, P. (1989). General branching processes as Markov fields. Stochastic Process. Appl. 32 183–212.
  • Kimura, M. (1971). Theoretical foundation of population genetics at the molecular level. Theor. Popul. Biol. 2 174–208.
  • Riordan, O. (2005). The small giant component in scale-free random graphs. Combin. Probab. Comput. 14 897–938.
  • Rudas, A., Tóth, B. and Valkó, B. (2007). Random trees and general branching processes. Random Structures Algorithms 31 186–202.
  • Smythe, R. T. and Mahmoud, H. M. (1994). A survey of recursive trees. Teor. Ĭmovīr. Mat. Stat. 51 1–29.
  • Szymański, J. (1987). On a nonuniform random recursive tree. In Random Graphs ’85 (Poznań, 1985). North-Holland Math. Stud. 144 297–306. North-Holland, Amsterdam.
  • Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B 213 21–87.