The Annals of Applied Probability

Sticky central limit theorems on open books

Thomas Hotz, Stephan Huckemann, Huiling Le, J. S. Marron, Jonathan C. Mattingly, Ezra Miller, James Nolen, Megan Owen, Vic Patrangenaru, and Sean Skwerer

Full-text: Open access


Given a probability distribution on an open book (a metric space obtained by gluing a disjoint union of copies of a half-space along their boundary hyperplanes), we define a precise concept of when the Fréchet mean (barycenter) is sticky. This nonclassical phenomenon is quantified by a law of large numbers (LLN) stating that the empirical mean eventually almost surely lies on the (codimension $1$ and hence measure $0$) spine that is the glued hyperplane, and a central limit theorem (CLT) stating that the limiting distribution is Gaussian and supported on the spine. We also state versions of the LLN and CLT for the cases where the mean is nonsticky (i.e., not lying on the spine) and partly sticky (i.e., is, on the spine but not sticky).

Article information

Ann. Appl. Probab., Volume 23, Number 6 (2013), 2238-2258.

First available in Project Euclid: 22 October 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60B99: None of the above, but in this section 60F05: Central limit and other weak theorems

Fréchet mean central limit theorem law of large numbers stratified space nonpositive curvature


Hotz, Thomas; Huckemann, Stephan; Le, Huiling; Marron, J. S.; Mattingly, Jonathan C.; Miller, Ezra; Nolen, James; Owen, Megan; Patrangenaru, Vic; Skwerer, Sean. Sticky central limit theorems on open books. Ann. Appl. Probab. 23 (2013), no. 6, 2238--2258. doi:10.1214/12-AAP899.

Export citation


  • [1] Arsigny, V., Fillard, P., Pennec, X. and Ayache, N. (2007). Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29 328–347 (electronic).
  • [2] Basrak, B. (2010). Limit theorems for the inductive mean on metric trees. J. Appl. Probab. 47 1136–1149.
  • [3] Basser, P. J. and Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111 209–219.
  • [4] Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 1–29.
  • [5] Bhattacharya, R. and Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds. II. Ann. Statist. 33 1225–1259.
  • [6] Bhattacharya, R. N., Buibas, M., Dryden, I. L., Ellingson, L. A., Groisser, D., Hendriks, H., Huckemann, S., Le, H., Liu, X., Marron, J. S., Osborne, D. E., Patrângenaru, V., Schwartzman, A., Thompson, H. W. and Wood, A. T. A. (2011). Extrinsic data analysis on sample spaces with a manifold stratification. In Advances in Mathematics, Invited Contributions at the Seventh Congress of Romanian Mathematicians, Brasov, 2011 (L. Beznea, V. Brîzanescu, M. Iosifescu, G. Marinoschi, R. Purice and D. Timotin. eds.) 148–156. Publishing House of the Romanian Academy.
  • [7] Billera, L. J., Holmes, S. P. and Vogtmann, K. (2001). Geometry of the space of phylogenetic trees. Adv. in Appl. Math. 27 733–767.
  • [8] Breiman, L. (1992). Probability. Classics in Applied Mathematics 7. SIAM, Philadelphia, PA.
  • [9] Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.
  • [10] Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10 215–310.
  • [11] Goresky, M. and MacPherson, R. (1988). Stratified Morse Theory. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 14. Springer, Berlin.
  • [12] Hendriks, H. and Landsman, Z. (1996). Asymptotic behavior of sample mean location for manifolds. Statist. Probab. Lett. 26 169–178.
  • [13] Huckemann, S. (2012). On the meaning of mean shape: Manifold stability, locus and the two sample test. Ann. Inst. Statist. Math. 64 1227–1259.
  • [14] Huckemann, S. (2011). Inference on 3D Procrustes means: Tree bole growth, rank deficient diffusion tensors and perturbation models. Scand. J. Stat. 38 424–446.
  • [15] Jupp, P. (1988). Residuals for directional data. J. Appl. Stat. 15 137–147.
  • [16] Miller, E., Owen, M. and Provan, J. S. (2012). Averaging metric phylogenetic trees. Unpublished manuscript, available at
  • [17] Owen, M. and Provan, J. S. (2011). A fast algorithm for computing geodesic distance in tree space. ACM/IEEE Transactions on Computational Biology and Bioinformatics 8 2–13.
  • [18] Patrangenaru, V., Liu, X. and Sugathadasa, S. (2010). A nonparametric approach to 3D shape analysis from digital camera images. I. J. Multivariate Anal. 101 11–31.
  • [19] Patrangenaru, V. and Mardia, K. V. (2003). Affine shape analysis and image analysis. In Proc. of the 2003 Leeds Annual Statistics Research Workshop 57–62, available at
  • [20] Schwartzman, A., Dougherty, R. F. and Taylor, J. E. (2008). False discovery rate analysis of brain diffusion direction maps. Ann. Appl. Stat. 2 153–175.
  • [21] Schwartzman, A., Mascarenhas, W. F. and Taylor, J. E. (2008). Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices. Ann. Statist. 36 2886–2919.
  • [22] Sturm, K.-T. (2003). Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemp. Math. 338 357–390. Amer. Math. Soc., Providence, RI.
  • [23] Ziezold, H. (1977). On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974), Vol. A 591–602. Reidel, Dordrecht.