The Annals of Applied Probability

Intermediate range migration in the two-dimensional stepping stone model

J. Theodore Cox

Full-text: Open access

Abstract

We consider the stepping stone model on the torus of side L in ℤ2 in the limit L→∞, and study the time it takes two lineages tracing backward in time to coalesce. Our work fills a gap between the finite range migration case of [Ann. Appl. Probab. 15 (2005) 671–699] and the long range case of [Genetics 172 (2006) 701–708], where the migration range is a positive fraction of L. We obtain limit theorems for the intermediate case, and verify a conjecture in [Probability Models for DNA Sequence Evolution (2008) Springer] that the model is homogeneously mixing if and only if the migration range is of larger order than (log L)1/2.

Article information

Source
Ann. Appl. Probab., Volume 20, Number 3 (2010), 785-805.

Dates
First available in Project Euclid: 18 June 2010

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1276867297

Digital Object Identifier
doi:10.1214/09-AAP639

Mathematical Reviews number (MathSciNet)
MR2680548

Zentralblatt MATH identifier
1234.60094

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60G50: Sums of independent random variables; random walks 92D10: Genetics {For genetic algebras, see 17D92}
Secondary: 82C41: Dynamics of random walks, random surfaces, lattice animals, etc. [See also 60G50]

Keywords
Stepping stone model torus random walk hitting times coalescence times

Citation

Cox, J. Theodore. Intermediate range migration in the two-dimensional stepping stone model. Ann. Appl. Probab. 20 (2010), no. 3, 785--805. doi:10.1214/09-AAP639. https://projecteuclid.org/euclid.aoap/1276867297


Export citation

References

  • [1] Aldous, D. (1989). Hitting times for random walks on vertex-transitive graphs. Math. Proc. Cambridge Philos. Soc. 106 179–191.
  • [2] Cox, J. T. (1989). Coalescing random walks and voter model consensus times on the torus in Zd. Ann. Probab. 17 1333–1366.
  • [3] Cox, J. T. and Durrett, R. (2002). The stepping stone model: New formulas expose old myths. Ann. Appl. Probab. 12 1348–1377.
  • [4] Cox, J. T., Durrett, R. and Perkins, E. A. (2000). Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 185–234.
  • [5] Cox, J. T. and Griffeath, D. (1987). Recent results for the stepping stone model. In Percolation Theory and Ergodic Theory of Infinite Particle Systems (Minneapolis, Minn., 19841985). The IMA Volumes in Mathematics and its Applications 8 73–83. Springer, New York.
  • [6] Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 36–61.
  • [7] Durrett, R. (2005). Probability: Theory and Examples, 3rd ed. Duxbury Press, Pacific Grove, CA.
  • [8] Durrett, R. (2008). Probability Models for DNA Sequence Evolution, 2nd ed. Springer, New York.
  • [9] Durrett, R. and Restrepo, M. (2008). One-dimensional stepping stone models, sardine genetics and Brownian local time. Ann. Appl. Probab. 18 334–358.
  • [10] Flatto, L., Odlyzko, A. M. and Wales, D. B. (1985). Random shuffles and group representations. Ann. Probab. 13 154–178.
  • [11] Kimura, M. (1953). “Stepping-stone” model of population. Annu. Rept. Natl. Inst. Genet. Jpn. 3 62–63.
  • [12] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248.
  • [13] Malécot, G. (1949). Les processus stochastiques de la génétique. In Le Calcul des Probabilités et Ses Applications. Colloques Internationaux du Centre National de la Recherche Scientifique 13 121–126. Centre National de la Recherche Scientifique, Paris.
  • [14] Matsen, F. A. and Wakeley, J. (2006). Convergence to the island-model coalescent process in populations with restricted migration. Genetics 172 701–708.
  • [15] Nagylaki, T. (1989). Gustave MaléEcot and the transition from classical to modern population genetics. Genetics 122 253–268.
  • [16] Wilkins, J. (2004). A separation-of-timescales approach to the coalescent in a continuous population. Genetics 168 2227–2244.
  • [17] Wilkinson-Herbots, H. M. (1998). Genealogy and subpopulation differentiation under various models of population structure. J. Math. Biol. 37 535–585.
  • [18] Zähle, I., Cox, J. T. and Durrett, R. (2005). The stepping stone model. II. Genealogies and the infinite sites model. Ann. Appl. Probab. 15 671–699.