The Annals of Applied Probability

On the distribution of the maximum of a Gaussian field with d parameters

Jean-Marc Azaïs and Mario Wschebor

Full-text: Open access

Abstract

Let I be a compact d-dimensional manifold, let X:I→ℛ be a Gaussian process with regular paths and let FI(u), u∈ℛ, be the probability distribution function of sup tIX(t).

We prove that under certain regularity and nondegeneracy conditions, FI is a C1-function and satisfies a certain implicit equation that permits to give bounds for its values and to compute its asymptotic behavior as u→+∞. This is a partial extension of previous results by the authors in the case d=1.

Our methods use strongly the so-called Rice formulae for the moments of the number of roots of an equation of the form Z(t)=x, where Z:I→ℛd is a random field and x is a fixed point in ℛd. We also give proofs for this kind of formulae, which have their own interest beyond the present application.

Article information

Source
Ann. Appl. Probab., Volume 15, Number 1A (2005), 254-278.

Dates
First available in Project Euclid: 28 January 2005

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1106922328

Digital Object Identifier
doi:10.1214/105051604000000602

Mathematical Reviews number (MathSciNet)
MR2115043

Zentralblatt MATH identifier
1079.60031

Subjects
Primary: 60G15: Gaussian processes 60G70: Extreme value theory; extremal processes

Keywords
Gaussian fields Rice formula regularity of the distribution of the maximum

Citation

Azaïs, Jean-Marc; Wschebor, Mario. On the distribution of the maximum of a Gaussian field with d parameters. Ann. Appl. Probab. 15 (2005), no. 1A, 254--278. doi:10.1214/105051604000000602. https://projecteuclid.org/euclid.aoap/1106922328


Export citation

References

  • Adler, R. J. (1981). The Geometry of Random Fields. Wiley, London.
  • Adler, R. J. (1990). An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes. IMS, Hayward, CA.
  • Azaïs, J.-M. and Delmas, C. (2002). Asymptotic expansions for the distribution of the maximum of a Gaussian random field. Extremes 5 181–212.
  • Azaïs, J.-M. and Wschebor, M. (2001). On the regularity of the distribution of the maximum of one-parameter Gaussian processes. Probab. Theory Related Fields 119 70–98.
  • Azaïs, J.-M. and Wschebor, M. (2002). On the distribution of the maximum of a Gaussian field with $d$ parameters. Preprint. Available at http://www.lsp.ups-tlse.fr/Azais/publi/ds1.pdf.
  • Brillinger, D. R. (1972). On the number of solutions of systems of random equations. Ann. Math. Statist. 43 534–540.
  • Cabaña, E. M. (1985). Esperanzas de integrales sobre conjuntos de de nivel aleatorios. In Actas del Segundo Congreso Latinoamericano de Probabilidades y Estadística Matemática 65–81.
  • Cramér, H. and Leadbetter, M. R. (1967). Stationary and Related Stochastic Processes. Wiley, New York.
  • Cucker, F. and Wschebor, M. (2003). On the expected condition number of linear programming problems. Numer. Math. 94 419–478.
  • Diebolt, J. and Posse, C. (1996). On the density of the maximum of smooth Gaussian processes. Ann. Probab. 24 1104–1129.
  • Federer, H. (1969). Geometric Measure Theory. Springer, New York.
  • Fernique, X. (1975). Régularité des trajectoires des fonctions aléatoires gaussiennes. Ecole d'Eté de Probabilités de Saint-Flour IV. Lecture Notes in Math. 480 1–96. Springer, New York.
  • Landau, H. J. and Shepp, L. A. (1970). On the supremum of a Gaussian process. Sankhyā Ser. A 32 369–378.
  • Lifshits, M. A. (1995). Gaussian Random Functions. Kluwer, Dordrecht.
  • Milnor, J. W. (1965). Topology from the Differentiable Viewpoint. Univ. Press of Virginia.
  • Piterbarg, V. I. (1996a). Asymptotic Methods in the Theory of Gaussian Processes and Fields. Amer. Math. Soc., Providence, RI.
  • Piterbarg, V. I. (1996b). Rice's method for large excursions of Gaussian random fields. Technical Report 478, Univ. North Carolina.
  • Taylor, J. E. and Adler R. J. (2002). Euler characteristics for Gaussian fields on manifolds. Ann. Probab. 30 533–563.
  • Taylor, J. E., Takemura, A. and Adler, R. (2004). Validity of the expected Euler characteristic heuristic. Ann. Probab. To appear.
  • Tsirelson, V. S. (1975). The density of the maximum of a Gaussian process. Theory Probab. Appl. 20 847–856.
  • Weber, M. (1985). Sur la densité du maximum d'un processus gaussien. J. Math. Kyoto Univ. 25 515–521.
  • Ylvisaker, D. (1968). A note on the absence of tangencies in Gaussian sample paths. Ann. Math. Statist. 39 261–262.