The Annals of Applied Probability

Large deviations in first-passage percolation

Yunshyong Chow and Yu Zhang

Full-text: Open access

Abstract

Consider the standard first-passage percolation on ${\Z}^d$, $d\geq 2$. Denote by $\phi_{0,n}$ the face--face first-passage time in $[0,n]^d$. It is well known that \[ \lim_{n\rightarrow \infty} {\phi_{0,n}\over n}=\mu(F) \qquad \mbox{a.s. and in } L_1, \] where $F$ is the common distribution on each edge. In this paper we show that the upper and lower tails of $\phi_{0,n}$ are quite different when $\mu(F)>0$. More precisely, we can show that for small $\varepsilon>0$, there exist constants $\alpha(\varepsilon, F)$ and $\beta (\varepsilon, F)$ such that \[ \lim_{n\rightarrow\infty}{-1\over n} \log P \left( \phi_{0,n}\leq n(\mu -\varepsilon) \right) = \alpha (\varepsilon, F) \] and \[ \lim_{n\rightarrow\infty}{-1\over n^d} \log P \left(\phi_{0,n}\geq n(\mu +\varepsilon) \right)= \beta (\varepsilon, F). \]

Article information

Source
Ann. Appl. Probab., Volume 13, Number 4 (2003), 1601-1614.

Dates
First available in Project Euclid: 25 November 2003

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1069786513

Digital Object Identifier
doi:10.1214/aoap/1069786513

Mathematical Reviews number (MathSciNet)
MR2023891

Zentralblatt MATH identifier
1038.60093

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
First-passage percolation large deviations

Citation

Chow, Yunshyong; Zhang, Yu. Large deviations in first-passage percolation. Ann. Appl. Probab. 13 (2003), no. 4, 1601--1614. doi:10.1214/aoap/1069786513. https://projecteuclid.org/euclid.aoap/1069786513


Export citation

References

  • Durrett, R. (1996). Probability: Theory and Examples, 2nd ed. Wadsworth, Belmont, CA.
  • Grimmett, G. and Kesten, H. (1984). First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 335--366.
  • Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks and generalized renewal theory. In Bernoulli, Bayes, Laplace Anniversary Volume (J. Neyman and L. Le Cam, eds.) 61--110. Springer, Berlin.
  • Kesten, H. (1986). Aspects of First-Passage Percolation. Lecture Notes in Math. 1180 125--264. Springer, Berlin.
  • Smythe, R. T. and Wierman, J. C. (1978). First Passage Percolation on the Square Lattice. Lecture Notes in Math. 671. Springer, Berlin.
  • Zhang, Y. (1995). Supercritical behaviors in first-passage percolation. Stochastic Process. Appl. 59 251--266.