The Annals of Applied Probability

Lack of monotonicity in ferromagnetic Ising model phase diagrams

Roberto H. Schonmann and Nelson I. Tanaka

Full-text: Open access

Abstract

We study patterns of the phase diagram of ferromagnetic Ising models on graphs under an external magnetic field. We provide an example of a tree with only two types of vertices on which for a range of values of the external field there is a unique Gibbs distribution at low enough and at high enough temperatures, while at intermediate temperatures there is phase coexistence (in other words, a reentrance transition takes place).

Article information

Source
Ann. Appl. Probab., Volume 8, Number 1 (1998), 234-245.

Dates
First available in Project Euclid: 29 July 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1027961042

Digital Object Identifier
doi:10.1214/aoap/1027961042

Mathematical Reviews number (MathSciNet)
MR1620366

Zentralblatt MATH identifier
0948.60090

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B27: Critical phenomena

Keywords
Ising model ferromagnetism graphs phase diagram monotonicity reentrance transition

Citation

Schonmann, Roberto H.; Tanaka, Nelson I. Lack of monotonicity in ferromagnetic Ising model phase diagrams. Ann. Appl. Probab. 8 (1998), no. 1, 234--245. doi:10.1214/aoap/1027961042. https://projecteuclid.org/euclid.aoap/1027961042


Export citation

References

  • [1] Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. de Gruy ter, Berlin.
  • [2] Higuchi, Y. (1977). Remarks on the limiting Gibbs states on a (d + 1)-tree. Publ. Res. Inst. Math. Sci. 13 335-348.
  • [3] Higuchi, Y. (1993). Coexistence of infinite -clusters II: Ising percolation in two dimensions. Probab. Theory Related Fields 97 1-33.
  • [4] Lebowitz, J. L. (1974). GHS and other inequalities. Comm. Math. Phy s. 35 87-92.
  • [5] Liggett, T. M. (1985). Interacting Particle Sy stems. Springer, New York.