Algebra & Number Theory

Coble fourfold, $\mathfrak S_6$-invariant quartic threefolds, and Wiman–Edge sextics

Ivan Cheltsov, Alexander Kuznetsov, and Konstantin Shramov

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We construct two small resolutions of singularities of the Coble fourfold (the double cover of the four-dimensional projective space branched over the Igusa quartic). We use them to show that all 𝔖 6 -invariant three-dimensional quartics are birational to conic bundles over the quintic del Pezzo surface with the discriminant curves from the Wiman–Edge pencil. As an application, we check that 𝔖 6 -invariant three-dimensional quartics are unirational, obtain new proofs of rationality of four special quartics among them and irrationality of the others, and describe their Weil divisor class groups as 𝔖 6 -representations.

Article information

Source
Algebra Number Theory, Volume 14, Number 1 (2020), 213-274.

Dates
Received: 2 February 2019
Revised: 1 July 2019
Accepted: 1 September 2019
First available in Project Euclid: 7 April 2020

Permanent link to this document
https://projecteuclid.org/euclid.ant/1586224824

Digital Object Identifier
doi:10.2140/ant.2020.14.213

Mathematical Reviews number (MathSciNet)
MR4076812

Zentralblatt MATH identifier
07180786

Subjects
Primary: 14E08: Rationality questions [See also 14M20]
Secondary: 14E05: Rational and birational maps 14J30: $3$-folds [See also 32Q25] 14J35: $4$-folds 14J45: Fano varieties

Keywords
Fano varieties Igusa quartic conic bundle del Pezzo surface Wiman–Edge pencil

Citation

Cheltsov, Ivan; Kuznetsov, Alexander; Shramov, Konstantin. Coble fourfold, $\mathfrak S_6$-invariant quartic threefolds, and Wiman–Edge sextics. Algebra Number Theory 14 (2020), no. 1, 213--274. doi:10.2140/ant.2020.14.213. https://projecteuclid.org/euclid.ant/1586224824


Export citation

References

  • A. A. Avilov, “Automorphisms of three-dimensional singular cubic hypersurfaces and the Cremona group”, Mat. Zametki 100:3 (2016), 461–464. In Russian; translated in Math. Notes 100:3-4 (2016), 482–485.
  • I. Bauer and A. Verra, “The rationality of the moduli space of genus-4 curves endowed with an order-3 subgroup of their Jacobian”, Michigan Math. J. 59:3 (2010), 483–504.
  • A. Beauville, “Variétés de Prym et jacobiennes intermédiaires”, Ann. Sci. École Norm. Sup. $(4)$ 10:3 (1977), 309–391.
  • A. Beauville, “Les singularités du diviseur $\Theta$ de la jacobienne intermédiaire de l'hypersurface cubique dans $\mathbb{P}\sp{4}$”, pp. 190–208 in Algebraic threefolds (Varenna, Italy, 1981), edited by A. Conte, Lecture Notes in Math. 947, Springer, 1982.
  • A. Beauville, “Non-rationality of the $\mathfrak{G}_6$-symmetric quartic threefolds”, Rend. Semin. Mat. Univ. Politec. Torino 71:3-4 (2013), 385–388.
  • J. Bernstein and O. Schwarzman, “Complex crystallographic Coxeter groups and affine root systems”, J. Nonlinear Math. Phys. 13:2 (2006), 163–182.
  • I. A. Cheltsov, “Birationally rigid Fano varieties”, Uspekhi Mat. Nauk 60:5 (2005), 71–160. In Russian; translated in Russ. Math. Surv. 60:5 (2005), 875–965.
  • I. Cheltsov and C. Shramov, “Five embeddings of one simple group”, Trans. Amer. Math. Soc. 366:3 (2014), 1289–1331.
  • I. Cheltsov and C. Shramov, Cremona groups and the icosahedron, CRC Press, Boca Raton, FL, 2016.
  • I. Cheltsov and C. Shramov, “Two rational nodal quartic 3-folds”, Q. J. Math. 67:4 (2016), 573–601.
  • I. Cheltsov, V. Przyjalkowski, and C. Shramov, “Burkhardt quartic, Barth sextic, and the icosahedron”, Int. Math. Res. Not. 2019:12 (2019), 3683–3703.
  • I. Cheltsov, V. Przyjalkowski, and C. Shramov, “Which quartic double solids are rational?”, J. Algebraic Geom. 28:2 (2019), 201–243.
  • A. Clingher, A. Malmendier, and T. Shaska, “Six line configurations and string dualities”, Comm. Math. Phys. 371:1 (2019), 159–196.
  • A. B. Coble, “An invariant condition for certain automorphic algebraic forms”, Amer. J. Math. 28:4 (1906), 333–366.
  • A. B. Coble, “Point sets and allied Cremona groups, I”, Trans. Amer. Math. Soc. 16:2 (1915), 155–198.
  • A. B. Coble, “Point sets and allied Cremona groups, II”, Trans. Amer. Math. Soc. 17:3 (1916), 345–385.
  • A. B. Coble, “Point sets and allied Cremona groups, III”, Trans. Amer. Math. Soc. 18:3 (1917), 331–372.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, 1985.
  • A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom. 4:2 (1995), 223–254.
  • L. Cremona, “Teoremi stereometrici dai quali si deducono le proprietà dell'esagrammo di Pascal”, Atti R. Accad. Lincei Mem. Cl. Sci. Fis. Mat. Natur. $(3)$ 1 (1877), 854–874.
  • S. Cynk, “Defect of a nodal hypersurface”, Manuscripta Math. 104:3 (2001), 325–331.
  • O. Debarre and A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom. 5:1 (2018), 15–76.
  • O. Debarre and A. Kuznetsov, “Gushel–Mukai varieties: moduli”, International Journal of Mathematics (2020).
  • I. Dolgachev, “Weighted projective varieties”, pp. 34–71 in Group actions and vector fields (Vancouver, 1981), edited by J. B. Carrell, Lecture Notes in Math. 956, Springer, 1982.
  • I. V. Dolgachev, “Abstract configurations in algebraic geometry”, pp. 423–462 in The Fano Conference (Turin, 2002), edited by A. Collino et al., Univ. Torino, 2004.
  • I. V. Dolgachev, Classical algebraic geometry: a modern view, Cambridge Univ. Press, 2012.
  • I. Dolgachev, “Corrado Segre and nodal cubic threefolds”, pp. 429–450 in From classical to modern algebraic geometry, edited by G. Casnati et al., Birkhäuser, Cham, 2016.
  • I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque 165, 1988.
  • I. Dolgachev, B. van Geemen, and S. Kondō, “A complex ball uniformization of the moduli space of cubic surfaces via periods of $K3$ surfaces”, J. Reine Angew. Math. 588 (2005), 99–148.
  • I. Dolgachev, B. Farb, and E. Looijenga, “Geometry of the Wiman–Edge pencil, I: Algebro-geometric aspects”, Eur. J. Math. 4:3 (2018), 879–930.
  • W. L. Edge, “A pencil of four-nodal plane sextics”, Math. Proc. Cambridge Philos. Soc. 89:3 (1981), 413–421.
  • G. Farkas and A. Verra, “The universal abelian variety over $\mathscr{A}_5$”, Ann. Sci. École Norm. Sup. $(4)$ 49:3 (2016), 521–542.
  • W. Feit, “The current situation in the theory of finite simple groups”, pp. 55–93 in Actes du Congrès International des Mathématiciens, I (Nice, France, 1970), edited by P. Montel, Gauthier-Villars, Paris, 1971.
  • H. Finkelnberg, “Small resolutions of the Segre cubic”, Nederl. Akad. Wetensch. Indag. Math. 49:3 (1987), 261–277.
  • W. Fulton, Intersection theory, Ergebnisse der Mathematik $($3$)$ 2, Springer, 1984.
  • W. Fulton and J. Harris, Representation theory: a first course, Grad. Texts in Math. 129, Springer, 1991.
  • The GAP Group, “GAP: groups, algorithms, and programming”, 2017, https://www.gap-system.org. Version 4.8.8.
  • G. van der Geer, “On the geometry of a Siegel modular threefold”, Math. Ann. 260:3 (1982), 317–350.
  • P. Hacking, S. Keel, and J. Tevelev, “Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces”, Invent. Math. 178:1 (2009), 173–227.
  • C. D. Hacon and J. McKernan, “The Sarkisov program”, J. Algebraic Geom. 22:2 (2013), 389–405.
  • B. Howard, J. Millson, A. Snowden, and R. Vakil, “A description of the outer automorphism of $S_6$, and the invariants of six points in projective space”, J. Combin. Theory Ser. A 115:7 (2008), 1296–1303.
  • B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math. 1637, Springer, 1996.
  • N. Inoue and F. Kato, “On the geometry of Wiman's sextic”, J. Math. Kyoto Univ. 45:4 (2005), 743–757.
  • G. James and M. Liebeck, Representations and characters of groups, Cambridge Univ. Press, 1993.
  • A. J. de Jong, N. I. Shepherd-Barron, and A. Van de Ven, “On the Burkhardt quartic”, Math. Ann. 286:1-3 (1990), 309–328.
  • A.-S. Kaloghiros, “The defect of Fano 3-folds”, J. Algebraic Geom. 20:1 (2011), 127–149.
  • A. Kuznetsov, “Küchle fivefolds of type $c5$”, Math. Z. 284:3-4 (2016), 1245–1278.
  • E. Looijenga, “The period map for cubic fourfolds”, Invent. Math. 177:1 (2009), 213–233.
  • K. Matsumoto, T. Sasaki, and M. Yoshida, “The monodromy of the period map of a $4$-parameter family of $K3$ surfaces and the hypergeometric function of type $(3,6)$”, Int. J. Math. 3:1 (1992), 164.
  • M. Mella, “Birational geometry of quartic 3-folds, II: The importance of being $\mathbb{Q}$-factorial”, Math. Ann. 330:1 (2004), 107–126.
  • I. Naruki, “Cross ratio variety as a moduli space of cubic surfaces”, Proc. Lond. Math. Soc. $(3)$ 45:1 (1982), 1–30.
  • Y. G. Prokhorov, “Fields of invariants of finite linear groups”, pp. 245–273 in Cohomological and geometric approaches to rationality problems, edited by F. Bogomolov and Y. Tschinkel, Progr. Math. 282, Birkhäuser, Boston, 2010.
  • Y. Prokhorov, “$G$-Fano threefolds, I”, Adv. Geom. 13:3 (2013), 389–418.
  • V. V. Przyjalkowski and C. A. Shramov, “Double quadrics with large automorphism groups”, Tr. Mat. Inst. Steklova 294 (2016), 167–190. In Russian; translated in Proc. Steklov Inst. Math. 294:1 (2016), 154–175.
  • H. W. Richmond, “The figure formed from six points in space of four dimensions”, Math. Ann. 53:1-2 (1900), 161–176.
  • V. G. Sarkisov, “On conic bundle structures”, Izv. Akad. Nauk SSSR Ser. Mat. 46:2 (1982), 371–408. In Russian; translated in Math. USSR-Izv. 20:2 (1983), 355–390.
  • C. Schoen, “Algebraic cycles on certain desingularized nodal hypersurfaces”, Math. Ann. 270:1 (1985), 17–27.
  • N. I. Shepherd-Barron, “Invariant theory for $S_5$ and the rationality of $M_6$”, Compositio Math. 70:1 (1989), 13–25.
  • V. V. Shokurov, “Prym varieties: theory and applications”, Izv. Akad. Nauk SSSR Ser. Mat. 47:4 (1983), 785–855. In Russian; translated in Math. USSR-Izv. 23:1 (1984), 83–147.
  • K. A. Shramov, “On the birational rigidity and $\mathbb{Q}$-factoriality of a singular double covering of a quadric with branching over a divisor of degree 4”, Mat. Zametki 84:2 (2008), 300–311. In Russian; translated in Math. Notes 84:1-2 (2008), 280–289.
  • J. A. Todd, “Configurations defined by six lines in space of three dimensions”, Proc. Cambridge Philos. Soc. 29:1 (1933), 52–68.
  • J. A. Todd, “A note on two special primals in four dimensions”, Q. J. Math. 6:1 (1935), 129–136.
  • J. A. Todd, “On a quartic primal with forty-five nodes, in space of four dimensions”, Q. J. Math. 7:1 (1936), 168–174.
  • A. Wiman, “Ueber eine einfache Gruppe von 360 ebenen Collineationen”, Math. Ann. 47:4 (1896), 531–556.
  • A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann. 48:1-2 (1896), 195–240.
  • A. G. Zamora, “Some remarks on the Wiman–Edge pencil”, Proc. Edinb. Math. Soc. $(2)$ 61:2 (2018), 401–412.