Algebra & Number Theory

On the ramified class field theory of relative curves

Quentin Guignard

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We generalize Deligne’s approach to tame geometric class field theory to the case of a relative curve, with arbitrary ramification.

Article information

Source
Algebra Number Theory, Volume 13, Number 6 (2019), 1299-1326.

Dates
Received: 21 May 2018
Revised: 26 February 2019
Accepted: 11 April 2019
First available in Project Euclid: 21 August 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1566353009

Digital Object Identifier
doi:10.2140/ant.2019.13.1299

Mathematical Reviews number (MathSciNet)
MR3994566

Zentralblatt MATH identifier
07103975

Subjects
Primary: 11G45: Geometric class field theory [See also 11R37, 14C35, 19F05]

Keywords
geometric class field theory global class field theory ramification

Citation

Guignard, Quentin. On the ramified class field theory of relative curves. Algebra Number Theory 13 (2019), no. 6, 1299--1326. doi:10.2140/ant.2019.13.1299. https://projecteuclid.org/euclid.ant/1566353009


Export citation

References

  • S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik $($3$)$ 21, Springer, 1990.
  • C. Contou-Carrère, “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova 130 (2013), 1–106.
  • P. Deligne, “Letter to J.-P. Serre, February 8, 1974”, 2001. In French. Appendix to S. Bloch and H. Esnault, “Gauss–Manin determinants for rank 1 irregular connections on curves”, Math. Ann 321:1 (2001), 15–87.
  • A. Grothendieck, “Eléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, II”, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 5–91.
  • A. Grothendieck, “Eléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III”, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5–255.
  • A. Grothendieck, “Eléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, IV”, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5–361.
  • S. Lang, “Sur les séries $L$ d'une variété algébrique”, Bull. Soc. Math. France 84 (1956), 385–407.
  • G. Laumon, “Faisceaux automorphes liés aux séries d'Eisenstein”, pp. 227–281 in Automorphic forms, Shimura varieties, and $L$-functions, I (Ann Arbor, MI, 1988), edited by L. Clozel and J. S. Milne, Perspect. Math. 10, Academic Press, Boston, 1990.
  • L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129, Soc. Math. France, Paris, 1985.
  • M. Rosenlicht, “Generalized Jacobian varieties”, Ann. of Math. $(2)$ 59 (1954), 505–530.
  • J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago 7, Hermann, Paris, 1959.
  • J.-P. Serre, “Sur les corps locaux à corps résiduel algébriquement clos”, Bull. Soc. Math. France 89 (1961), 105–154.
  • J.-P. Serre, Corps locaux, Publ. Inst. Math. Univ. Nancago 8, Hermann, Paris, 1962.
  • A. Grothendieck, Revêtements étales et groupe fondamental (Séminaire de Géométrie Algébrique du Bois Marie 1960–1961), Lecture Notes in Math. 224, Springer, 1971.
  • M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Tome 3: Exposés IX–XIX (Séminaire de Géométrie Algébrique du Bois Marie 1963–1964), Lecture Notes in Math. 305, Springer, 1973.
  • T. Suzuki, “Some remarks on the local class field theory of Serre and Hazewinkel”, Bull. Soc. Math. France 141:1 (2013), 1–24.
  • D. Takeuchi, “Blow-ups and class field theory for curves”, Algebra Number Theory 13:6 (2019), 1327–1351.