Algebra & Number Theory

Torsion in the 0-cycle group with modulus

Amalendu Krishna

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show, for a smooth projective variety X over an algebraically closed field k with an effective Cartier divisor D , that the torsion subgroup CH 0 ( X | D ) { l } can be described in terms of a relative étale cohomology for any prime l p = char ( k ) . This extends a classical result of Bloch, on the torsion in the ordinary Chow group, to the modulus setting. We prove the Roitman torsion theorem (including p -torsion) for CH 0 ( X | D ) when D is reduced. We deduce applications to the problem of invariance of the prime-to- p torsion in CH 0 ( X | D ) under an infinitesimal extension of D .

Article information

Source
Algebra Number Theory, Volume 12, Number 6 (2018), 1431-1469.

Dates
Received: 12 May 2017
Revised: 11 September 2017
Accepted: 15 February 2018
First available in Project Euclid: 25 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.ant/1540432834

Digital Object Identifier
doi:10.2140/ant.2018.12.1431

Mathematical Reviews number (MathSciNet)
MR3864203

Zentralblatt MATH identifier
06973916

Subjects
Primary: 14C25: Algebraic cycles
Secondary: 13F35: Witt vectors and related rings 14F30: $p$-adic cohomology, crystalline cohomology 19F15: Symbols and arithmetic [See also 11R37]

Keywords
Cycles with modulus cycles on singular schemes algebraic K-theory étale cohomology

Citation

Krishna, Amalendu. Torsion in the 0-cycle group with modulus. Algebra Number Theory 12 (2018), no. 6, 1431--1469. doi:10.2140/ant.2018.12.1431. https://projecteuclid.org/euclid.ant/1540432834


Export citation

References

  • H. Ananthnarayan, L. L. Avramov, and W. F. Moore, “Connected sums of Gorenstein local rings”, J. Reine Angew. Math. 667 (2012), 149–176.
  • L. Barbieri-Viale and V. Srinivas, Albanese and Picard $1$-motives, Mém. Soc. Math. France (N.S.) 87, Soc. Math. France, Paris, 2001.
  • L. Barbieri-Viale, C. Pedrini, and C. Weibel, “Roitman's theorem for singular complex projective surfaces”, Duke Math. J. 84:1 (1996), 155–190.
  • H. Bass, Algebraic $K$-theory, W. A. Benjamin, New York, 1968.
  • H. Bass and M. P. Murthy, “Grothendieck groups and Picard groups of abelian group rings”, Ann. of Math. $(2)$ 86 (1967), 16–73.
  • F. Binda and A. Krishna, “Zero cycles with modulus and zero cycles on singular varieties”, Compositio Math. 154:1 (2018), 120–187.
  • F. Binda and S. Saito, “Relative cycles with moduli and regulator maps”, J. Math. Inst. Jussieu (online publication December 2017).
  • J. Biswas and V. Srinivas, “Roitman's theorem for singular projective varieties”, Compositio Math. 119:2 (1999), 213–237.
  • S. Bloch, “Torsion algebraic cycles and a theorem of Roitman”, Compositio Math. 39:1 (1979), 107–127.
  • S. Bloch, Lectures on algebraic cycles, Duke Univ. Math. Series 4, Duke Univ. Math. Dept., 1980.
  • S. Bloch, “Algebraic cycles and higher $K$-theory”, Adv. Math. 61:3 (1986), 267–304.
  • S. Bloch and A. Ogus, “Gersten's conjecture and the homology of schemes”, Ann. Sci. École Norm. Sup. $(4)$ 7:2 (1974), 181–201.
  • K. S. Brown and S. M. Gersten, “Algebraic $K$-theory as generalized sheaf cohomology”, pp. 266–292 in Algebraic $K$-theory, I: Higher $K$-theories (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 341, Springer, 1973.
  • C. Cumino, S. Greco, and M. Manaresi, “Bertini theorems for weak normality”, Compositio Math. 48:3 (1983), 351–362.
  • C. Cumino, S. Greco, and M. Manaresi, “Hyperplane sections of weakly normal varieties in positive characteristic”, Proc. Amer. Math. Soc. 106:1 (1989), 37–42.
  • H. Esnault, V. Srinivas, and E. Viehweg, “The universal regular quotient of the Chow group of points on projective varieties”, Invent. Math. 135:3 (1999), 595–664.
  • K. Fujiwara, “A proof of the absolute purity conjecture (after Gabber)”, pp. 153–183 in Algebraic geometry 2000, Azumino (Hotaka, 2000), edited by S. Usui et al., Adv. Stud. Pure Math. 36, Math. Soc. Japan, Tokyo, 2002.
  • W. Fulton, Intersection theory, Ergebnisse der Mathematik $($3$)$ 2, Springer, 1984.
  • S. C. Geller and C. A. Weibel, “$K\sb{1}(A,\,B,\,I)$”, J. Reine Angew. Math. 342 (1983), 12–34.
  • H. Gillet, “Riemann–Roch theorems for higher algebraic $K$-theory”, Adv. Math. 40:3 (1981), 203–289.
  • H. Gillet, “Gersten's conjecture for the $K$-theory with torsion coefficients of a discrete valuation ring”, J. Algebra 103:1 (1986), 377–380.
  • D. R. Grayson, “Universal exactness in algebraic $K$-theory”, J. Pure Appl. Algebra 36:2 (1985), 139–141.
  • S. Greco and C. Traverso, “On seminormal schemes”, Compositio Math. 40:3 (1980), 325–365.
  • R. T. Hoobler, “The Merkuriev–Suslin theorem for any semi-local ring”, J. Pure Appl. Algebra 207:3 (2006), 537–552.
  • C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Math. Soc. Lecture Note Series 336, Cambridge Univ. Press, 2006.
  • R. Iwasa and W. Kai, “Chern classes with modulus”, preprint, 2016.
  • M. Kerz and S. Saito, “Chow group of $0$-cycles with modulus and higher-dimensional class field theory”, Duke Math. J. 165:15 (2016), 2811–2897.
  • S. L. Kleiman and A. B. Altman, “Bertini theorems for hypersurface sections containing a subscheme”, Comm. Algebra 7:8 (1979), 775–790.
  • A. Krishna, “Murthy's conjecture on $0$-cycles”, preprint, 2015.
  • A. Krishna, “On $0$-cycles with modulus”, Algebra Number Theory 9:10 (2015), 2397–2415.
  • A. Krishna and M. Levine, “Additive higher Chow groups of schemes”, J. Reine Angew. Math. 619 (2008), 75–140.
  • A. Krishna and V. Srinivas, “Zero-cycles and $K$-theory on normal surfaces”, Ann. of Math. $(2)$ 156:1 (2002), 155–195.
  • S. Lang, Abelian varieties, Interscience Tracts in Pure and Appl. Math. 7, Interscience, New York, 1959.
  • M. Levine, “Bloch's formula for singular surfaces”, Topology 24:2 (1985), 165–174.
  • M. Levine, “Zero-cycles and $K$-theory on singular varieties”, pp. 451–462 in Algebraic geometry (Brunswick, ME, 1985), edited by S. J. Bloch, Proc. Sympos. Pure Math. 46, Amer. Math. Soc., Providence, RI, 1987.
  • M. Levine, “The indecomposable $K_3$ of fields”, Ann. Sci. École Norm. Sup. $(4)$ 22:2 (1989), 255–344.
  • M. Levine, Mixed motives, Mathematical Surveys and Monographs 57, Amer. Math. Soc., Providence, RI, 1998.
  • M. Levine and C. Weibel, “Zero cycles and complete intersections on singular varieties”, J. Reine Angew. Math. 359 (1985), 106–120.
  • V. M. Mallick, “Roitman's theorem for singular projective varieties in arbitrary characteristic”, J. K-Theory 3:3 (2009), 501–531.
  • M. Manaresi, “Some properties of weakly normal varieties”, Nagoya Math. J. 77 (1980), 61–74.
  • H. Matsumura, Commutative ring theory, Cambridge Studies in Adv. Math. 8, Cambridge Univ. Press, 1986.
  • J. P. May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies 11, D. Van Nostrand, Princeton, 1967.
  • A. S. Merkur'ev and A. A. Suslin, “The group $K_3$ for a field”, Izv. Akad. Nauk SSSR Ser. Mat. 54:3 (1990), 522–545. In Russian; translated in Math. USSR-Izv. 36:3 (1991), 541–565.
  • J. S. Milne, Étale cohomology, Princeton Math. Series 33, Princeton Univ. Press, 1980.
  • J. S. Milne, “Zero cycles on algebraic varieties in nonzero characteristic: Rojtman's theorem”, Compositio Math. 47:3 (1982), 271–287.
  • H. Miyazaki, “Cube invariance of higher Chow groups with modulus”, preprint, 2016.
  • A. Navarro, “Riemann–Roch for homotopy invariant $K$-theory and Gysin morphisms”, Adv. Math. 328 (2018), 501–554.
  • J. Park, “Regulators on additive higher Chow groups”, Amer. J. Math. 131:1 (2009), 257–276.
  • C. Pedrini and C. Weibel, “Divisibility in the Chow group of zero-cycles on a singular surface”, pp. 371–409 in $K$-theory (Strasbourg, 1992), edited by C. Kassel et al., Astérisque 226, Soc. Math. France, Paris, 1994.
  • D. Quillen, “Higher algebraic $K$-theory, I”, pp. 85–147 in Algebraic $K$-theory, I: Higher $K$-theories, edited by H. Bass, Lecture Notes in Math. 341, Springer, 1973.
  • A. A. Rojtman, “The torsion of the group of $0$-cycles modulo rational equivalence”, Ann. of Math. $(2)$ 111:3 (1980), 553–569.
  • K. Rülling, “The generalized de Rham–Witt complex over a field is a complex of zero-cycles”, J. Algebraic Geom. 16:1 (2007), 109–169.
  • J.-P. Serre, “Morphismes universels et différentielles de troisième espèce”, pp. [exposé] 11 in Séminaire Claude Chevalley, tome 4, Secrétariat Mathématique, Paris, 1958-1959.
  • P. Deligne, Cohomologie étale (Séminaire de Géométrie Algébrique du Bois Marie), Lecture Notes in Math. 569, Springer, 1977.
  • A. A. Suslin, “Torsion in $K_2$ of fields”, $K$-Theory 1:1 (1987), 5–29.
  • C. Traverso, “Seminormality and Picard group”, Ann. Scuola Norm. Sup. Pisa $(3)$ 24:4 (1970), 585–595.
  • V. Voevodsky, “Cohomological theory of presheaves with transfers”, pp. 87–137 in Cycles, transfers, and motivic homology theories, edited by J. N. Mather and E. M. Stein, Ann. of Math. Stud. 143, Princeton Univ. Press, 2000.
  • A. Weil, “Sur les critères d'équivalence en géométrie algébrique”, Math. Ann. 128 (1954), 95–127.
  • H. Yanagihara, “Some results on weakly normal ring extensions”, J. Math. Soc. Japan 35:4 (1983), 649–661.