Algebra & Number Theory

Group actions and rational ideals

Martin Lorenz

Full-text: Open access

Abstract

We develop the theory of rational ideals for arbitrary associative algebras R without assuming the standard finiteness conditions, noetherianness or the Goldie property. The Amitsur–Martindale ring of quotients replaces the classical ring of quotients which underlies the previous definition of rational ideals but is not available in a general setting.

Our main result concerns rational actions of an affine algebraic group G on R. Working over an algebraically closed base field, we prove an existence and uniqueness result for generic rational ideals in the sense of Dixmier: for every G-rational ideal I of R, the closed subset of the rational spectrum RatR that is defined by I is the closure of a unique G-orbit in RatR. Under additional Goldie hypotheses, this was established earlier by Mœglin and Rentschler (in characteristic 0) and by Vonessen (in arbitrary characteristic), answering a question of Dixmier.

Article information

Source
Algebra Number Theory, Volume 2, Number 4 (2008), 467-499.

Dates
Received: 24 January 2008
Accepted: 28 April 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797270

Digital Object Identifier
doi:10.2140/ant.2008.2.467

Mathematical Reviews number (MathSciNet)
MR2411408

Zentralblatt MATH identifier
1166.16015

Subjects
Primary: 16W22: Actions of groups and semigroups; invariant theory
Secondary: 16W35 17B35: Universal enveloping (super)algebras [See also 16S30]

Keywords
algebraic group rational action prime ideal rational ideal primitive ideal generic ideal extended centroid Amitsur–Martindale ring of quotient

Citation

Lorenz, Martin. Group actions and rational ideals. Algebra Number Theory 2 (2008), no. 4, 467--499. doi:10.2140/ant.2008.2.467. https://projecteuclid.org/euclid.ant/1513797270


Export citation

References

  • S. A. Amitsur, “On rings of quotients”, pp. 149–164 in Symposia Mathematica (Rome, 1970), vol. VIII, Academic Press, London, 1972.
  • W. E. Baxter and W. S. Martindale, III, “Jordan homomorphisms of semiprime rings”, J. Algebra 56:2 (1979), 457–471.
  • A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics 126, Springer, New York, 1991.
  • W. Borho, P. Gabriel, and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume), Lecture Notes in Mathematics 357, Springer, Berlin, 1973.
  • N. Bourbaki, Éléments de mathématique, Lecture Notes in Mathematics 864, Masson, Paris, 1981.
  • K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002.
  • K. A. Brown and M. Lorenz, “Grothendieck groups of invariant rings: linear actions of finite groups”, Math. Z. 221:1 (1996), 113–137.
  • W. Chin, “Actions of solvable algebraic groups on noncommutative rings”, pp. 29–38 in Azumaya algebras, actions, and modules, edited by D. Haile and J. Osterburg, Contemp. Math. 124, Amer. Math. Soc., Providence, RI, 1992.
  • J. Dixmier, “Sur les idéaux génériques dans les algèbres enveloppantes”, Bull. Sci. Math. $(2)$ 96 (1972), 17–26.
  • J. Dixmier, “Idéaux primitifs dans les algèbres enveloppantes”, J. Algebra 48:1 (1977), 96–112.
  • J. Dixmier, Enveloping algebras, Graduate Studies in Mathematics 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation.
  • M. Duflo, “Théorie de Mackey pour les groupes de Lie algébriques”, Acta Math. 149:3-4 (1982), 153–213.
  • T. S. Erickson, W. S. Martindale, 3rd, and J. M. Osborn, “Prime nonassociative algebras”, Pacific J. Math. 60:1 (1975), 49–63.
  • P. Gabriel, Représentations des algèbres de Lie résolubles (d'après J. Dixmier)., pp. 1–22, Lecture Notes in Mathematics 179, Springer, New York, 1971.
  • R. S. Irving and L. W. Small, “On the characterization of primitive ideals in enveloping algebras”, Math. Z. 173:3 (1980), 217–221.
  • J. C. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs 107, American Mathematical Society, Providence, RI, 2003.
  • J. Lambek, Lectures on rings and modules, 2nd ed., Chelsea, New York, 1976.
  • S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer, New York, 2002.
  • M. Lorenz and D. S. Passman, “Centers and prime ideals in group algebras of polycyclic-by-finite groups”, J. Algebra 57:2 (1979), 355–386. http://www.emis.de/cgi-bin/MATH-item?0415.16008Zbl 0415.16008
  • W. S. Martindale, III, “Lie isomorphisms of prime rings”, Trans. Amer. Math. Soc. 142 (1969), 437–455.
  • W. S. Martindale, III, “Prime rings satisfying a generalized polynomial identity”, J. Algebra 12 (1969), 576–584.
  • W. S. Martindale, M. P. Rosen, and J. D. Rosen, “Extended centroids of power series rings”, Glasgow Math. J. 32:3 (1990), 371–375.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Graduate Studies in Mathematics 30, American Mathematical Society, Providence, RI, 2001.
  • C. Mœglin, “Idéaux primitifs des algèbres enveloppantes”, J. Math. Pures Appl. $(9)$ 59:3 (1980), 265–336.
  • C. Mœglin and R. Rentschler, “Orbites d'un groupe algébrique dans l'espace des idéaux rationnels d'une algèbre enveloppante”, Bull. Soc. Math. France 109:4 (1981), 403–426.
  • C. Mœglin and R. Rentschler, “Sur la classification des idéaux primitifs des algèbres enveloppantes”, Bull. Soc. Math. France 112:1 (1984), 3–40.
  • C. Mœglin and R. Rentschler, “Idéaux $G$-rationnels, rang de Goldie”, 1986. Preprint.
  • C. Mœglin and R. Rentschler, “Sous-corps commutatifs ad-stables des anneaux de fractions des quotients des algèbres enveloppantes; espaces homogènes et induction de Mackey”, J. Funct. Anal. 69:3 (1986), 307–396.
  • S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics 818, Springer, Berlin, 1980.
  • S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics 82, 1993.
  • Y. Nouazé and P. Gabriel, “Idéaux premiers de l'algèbre enveloppante d'une algèbre de Lie nilpotente”, J. Algebra 6 (1967), 77–99.
  • D. S. Passman, Infinite crossed products, Pure and Applied Mathematics 135, Academic Press, Boston, 1989.
  • D. S. Passman, A course in ring theory, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991.
  • C. Procesi, Rings with polynomial identities, Pure and Applied Mathematics 17, Marcel Dekker, New York, 1973.
  • R. Rentschler, “L'injectivité de l'application de Dixmier pour les algèbres de Lie résolubles”, Invent. Math. 23 (1974), 49–71.
  • R. Rentschler, “Orbites dans le spectre primitif de l'algèbre enveloppante d'une algèbre de Lie”, pp. 88–98 in Séminaire d'Algèbre Paul Dubreil 31ème année, edited by M.-P. Malliavin, Lecture Notes in Math. 740, Springer, Berlin, 1979.
  • R. Rentschler, “Primitive ideals in enveloping algebras (general case)”, pp. 37–57 in Noetherian rings and their applications (Oberwolfach, 1983), edited by L. W. Small, Math. Surveys Monogr. 24, Amer. Math. Soc., Providence, RI, 1987.
  • N. Vonessen, “Actions of linearly reductive groups on PI-algebras”, Trans. Amer. Math. Soc. 335:1 (1993), 425–442.
  • N. Vonessen, “Actions of algebraic groups on the spectrum of rational ideals”, J. Algebra 182:2 (1996), 383–400.
  • N. Vonessen, “Actions of algebraic groups on the spectrum of rational ideals, II”, J. Algebra 208:1 (1998), 216–261.
  • W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics 66, Springer, New York, 1979.