Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Active phase for activated random walks on $\mathbb{Z}^{d}$, $d\geq3$, with density less than one and arbitrary sleeping rate

Lorenzo Taggi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

It has been conjectured that the critical density of the Activated Random Walk model is strictly less than one for any value of the sleeping rate. We prove this conjecture on $\mathbb{Z}^{d}$ when $d\geq3$ and, more generally, on graphs where the random walk is transient. Moreover, we establish the occurrence of a phase transition on non-amenable graphs, extending previous results which require that the graph is amenable or a regular tree.

Résumé

Il a été conjecturé que la densité critique pour le modèle de marches aléatoires activées était strictement inférieur à 1 pour toute valeur du taux d’endormissement. Nous démontrons cette conjecture pour $\mathbb{Z}^{d}$ quand $d\geq3$ et, plus généralement, pour les graphes sur lesquels la marche aléatoire est transitoire. De plus, nous montrons l’existence d’une transition de phase pour les graphes non moyennables, généralisant ainsi des résultats antérieurs qui demandaient que le graphe soit moyennable ou un arbre régulier.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 55, Number 3 (2019), 1751-1764.

Dates
Received: 3 January 2018
Revised: 5 June 2018
Accepted: 17 September 2018
First available in Project Euclid: 25 September 2019

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1569398884

Digital Object Identifier
doi:10.1214/18-AIHP933

Mathematical Reviews number (MathSciNet)
MR4010950

Zentralblatt MATH identifier
07133736

Subjects
Primary: 82C22: Interacting particle systems [See also 60K35]
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C26: Dynamic and nonequilibrium phase transitions (general)

Keywords
Interacting particle systems Abelian networks Absorbing-state phase transition Self-organized criticality

Citation

Taggi, Lorenzo. Active phase for activated random walks on $\mathbb{Z}^{d}$, $d\geq3$, with density less than one and arbitrary sleeping rate. Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 3, 1751--1764. doi:10.1214/18-AIHP933. https://projecteuclid.org/euclid.aihp/1569398884


Export citation

References

  • [1] G. Amir and O. Gurel-Gurevich. On fixation of activated random walks. Electron. Commun. Probab. 15 (2010) 119–123.
  • [2] R. Basu, S. Ganguly and C. Hoffman. Non-fixation of symmetric activated random walk on the line for small sleep rate. Comm. Math. Phys. 358 (2018) 1151–1185.
  • [3] R. Dickman, L. T. Rolla and V. Sidoravicius. Activated random walkers: Facts, conjectures and challenges. J. Stat. Phys. 138 (2010) 126–142.
  • [4] L. T. Rolla and V. Sidoravicius. Absorbing-state phase transition for driven-dissipative stochastic dynamics on $\mathbb{Z}$. Invent. Math. 188 (2012) 127–150.
  • [5] L. T. Rolla, V. Sidoravicius and O. Zindy. Critical density for activated random walks, 2017. Available at arXiv:1707.06081.
  • [6] L. T. Rolla and L. Tournier. Sustained activity for biased activated random walks at arbitrarily low density. Ann. Inst. Henri Poincaré 54 (2018) 938–951.
  • [7] E. Shellef. Nonfixation for activated random walk. ALEA 7 (2010) 137–149.
  • [8] V. Sidoravicius and A. Teixeira. Absorbing-state transitions for stochastic sandpiles and activated random walk. Electron. J. Probab. 22 (2017) paper no. 33.
  • [9] A. Stauffer and L. Taggi. Critical density of activated random walks on transitive graphs. Ann. Probab. 46 (2018) 2190–2220.
  • [10] L. Taggi. Absorbing-state phase transition in biased activated random walk. Electron. J. Probab. 21 (2016) paper no. 13.