Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

On the spectral gap of spherical spin glass dynamics

Reza Gheissari and Aukosh Jagannath

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the time to equilibrium for the Langevin dynamics of the spherical $p$-spin glass model of system size $N$. We show that the log-Sobolev constant and spectral gap are order $1$ at sufficiently high temperatures whereas the spectral gap decays exponentially in $N$ at sufficiently low temperatures. These verify the existence of a dynamical high temperature phase and a dynamical glass phase at the level of the spectral gap. Key to these results are the understanding of the extremal process and restricted free energy of Subag–Zeitouni and Subag.

Résumé

Nous considérons le temps d’atteinte de l’équilibre pour la dynamique de Langevin du modèle de verre de $p$-spin sphérique de taille $N$. Nous montrons que la constante de log-Sobolev et le trou spectral sont d’ordre $1$ à température suffisamment grande, alors que le trou spectral décroit exponentiellement en $N$ à température suffisamment basse. Ceci confirme l’existence d’une phase dynamique de haute température et d’une phase dynamique verre concernant le trou spectral. Les arguments clés de ces résultats sont la compréhension du processus extrémal et de l’énergie libre restreinte de Subag–Zeitouni et Subag.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 55, Number 2 (2019), 756-776.

Dates
Received: 21 June 2017
Revised: 27 February 2018
Accepted: 14 March 2018
First available in Project Euclid: 14 May 2019

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1557820830

Digital Object Identifier
doi:10.1214/18-AIHP897

Subjects
Primary: 82C44: Dynamics of disordered systems (random Ising systems, etc.)
Secondary: 82D30: Random media, disordered materials (including liquid crystals and spin glasses) 82C26: Dynamic and nonequilibrium phase transitions (general) 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Keywords
Spin glass Langevin dynamics Glassy dynamics Spectral gap Log-Sobolev

Citation

Gheissari, Reza; Jagannath, Aukosh. On the spectral gap of spherical spin glass dynamics. Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 2, 756--776. doi:10.1214/18-AIHP897. https://projecteuclid.org/euclid.aihp/1557820830


Export citation

References

  • [1] R. J. Adler and J. E. Taylor. Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York, 2007.
  • [2] M. Aizenman and R. Holley. Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime. In Percolation Theory and Ergodic Theory of Infinite Particle Systems 1–11. Minneapolis, Minn., 1984–1985. IMA Vol. Math. Appl. 8. Springer, New York, 1987.
  • [3] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge University Press, Cambridge, 2010.
  • [4] A. Auffinger and G. Ben Arous. Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab. 41 (6) (2013) 4214–4247.
  • [5] A. Auffinger, G. Ben Arous and J. Černý. Random matrices and complexity of spin glasses. Comm. Pure Appl. Math. 66 (2) (2013) 165–201.
  • [6] D. Bakry and M. Ledoux. Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123 (2) (1996) 259–281.
  • [7] G. Ben Arous, A. Bovier and J. Černý. Universality of the REM for dynamics of mean-field spin glasses. Comm. Math. Phys. 282 (3) (2008) 663–695.
  • [8] G. Ben Arous, A. Bovier and V. Gayrard. Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys. 235 (3) (2003) 379–425.
  • [9] G. Ben Arous, A. Bovier and V. Gayrard. Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys. 236 (1) (2003) 1–54.
  • [10] G. Ben Arous, A. Dembo and A. Guionnet. Aging of spherical spin glasses. Probab. Theory Related Fields 120 (1) (2001) 1–67.
  • [11] G. Ben Arous, A. Dembo and A. Guionnet. Cugliandolo–Kurchan equations for dynamics of spin-glasses. Probab. Theory Related Fields 136 (4) (2006) 619–660.
  • [12] G. Ben Arous and A. Guionnet. Large deviations for Langevin spin glass dynamics. Probab. Theory Related Fields 102 (4) (1995) 455–509.
  • [13] G. Ben Arous and A. Guionnet. Symmetric Langevin spin glass dynamics. Ann. Probab. 25 (3) (1997) 1367–1422.
  • [14] G. Ben Arous and O. Gün. Universality and extremal aging for dynamics of spin glasses on subexponential time scales. Comm. Pure Appl. Math. 65 (1) (2012) 77–127.
  • [15] L. Berthier and G. Biroli. Theoretical perspective on the glass transition and amorphous materials. Rev. Modern Phys. 83 (2) (2011) 587.
  • [16] A. Bovier and F. den Hollander. Metastability: A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 351. Springer, Cham, 2015.
  • [17] A. Bovier and V. Gayrard. Convergence of clock processes in random environments and ageing in the $p$-spin SK model. Ann. Probab. 41 (2) (2013) 817–847.
  • [18] A. Bovier, V. Gayrard and A. Svejda. Convergence to extremal processes in random environments and extremal ageing in SK models. Probab. Theory Related Fields 157 (1–2) (2013) 251–283.
  • [19] T. Castellani and A. Cavagna. Spin-glass theory for pedestrians. J. Stat. Mech. Theory Exp. 2005 (05), P05012 (2005).
  • [20] J. Černý and T. Wassmer. Aging of the Metropolis dynamics on the random energy model. Probab. Theory Related Fields 167 (1–2) (2017) 253–303.
  • [21] I. Chavel. Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115. Academic Press, Orlando, FL, 1984. Including a chapter by Burton Randol, with an appendix by Jozef Dodziuk.
  • [22] W. Chen. The Aizenman–Sims–Starr scheme and Parisi formula for mixed $p$-spin spherical models. Electron. J. Probab. 18 (94), 14 (2013).
  • [23] A. Crisanti and L. Leuzzi. Spherical $2+p$ spin-glass model: An exactly solvable model for glass to spin-glass transition. Phys. Rev. Lett. 93, 217203 (2004).
  • [24] L. F. Cugliandolo and J. Kurchan. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Phys. Rev. Lett. 71 (1993) 173–176.
  • [25] E. De Santis. Glauber dynamics of spin glasses at low and high temperature. Ann. Inst. Henri Poincaré Probab. Stat. 38 (5) (2002) 681–710.
  • [26] P. G. Debenedetti and F. H. Stillinger. Supercooled liquids and the glass transition. Nature 410 (6825) (2001) 259–267.
  • [27] A. Dembo, A. Guionnet and C. Mazza. Limiting dynamics for spherical models of spin glasses at high temperature. J. Stat. Phys. 128 (4) (2007) 847–881.
  • [28] J. Ding, A. Sly and N. Sun. Proof of the satisfiability conjecture for large $k$. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15 59–68. ACM, New York, NY, USA, 2015.
  • [29] R. L. Dobrushin and S. B. Shlosman. Constructive criterion for the uniqueness of Gibbs field. In Statistical Physics and Dynamical Systems 347–370. Köszeg, 1984. Progr. Phys. 10. Birkhäuser, Boston, MA, 1985.
  • [30] L. C. Evans. Partial Differential Equations, 2nd edition. Graduate Studies in Mathematics 19. American Mathematical Society, Providence, RI, 2010.
  • [31] L. R. Fontes, M. Isopi, Y. Kohayakawa and P. Picco. The spectral gap of the REM under Metropolis dynamics. Ann. Appl. Probab. 8 (3) (1998) 917–943.
  • [32] V. Gayrard. Aging in Metropolis dynamics of the REM: A proof. ArXiv e-prints, 2016.
  • [33] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
  • [34] R. B. Griffiths, C. Weng and J. S. Langer. Relaxation times for metastable states in the mean-field model of a ferromagnet. Phys. Rev. 149 (1966) 301–305.
  • [35] A. Guionnet and B. Zegarlinski. Decay to equilibrium in random spin systems on a lattice. Comm. Math. Phys. 181 (3) (1996) 703–732.
  • [36] A. Guionnet and B. Zegarlinski. Lectures on logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXVI 1–134. Lecture Notes in Math. 1801. Springer, Berlin, 2003.
  • [37] R. Holley. Possible rates of convergence in finite range, attractive spin systems. In Particle Systems, Random Media and Large Deviations 215–234. Brunswick, Maine, 1984. Contemp. Math. 41. Amer. Math. Soc., Providence, RI, 1985.
  • [38] P. D. Lax. Functional Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience. Wiley, New York, 2002.
  • [39] M. Ledoux. A simple analytic proof of an inequality by P. Buser. Proc. Amer. Math. Soc. 121 (3) (1994) 951–959.
  • [40] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001.
  • [41] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Classics in Mathematics. Springer, Berlin, 2011. Reprint of the 1991 edition.
  • [42] D. A. Levin, M. J. Luczak and Y. Peres. Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability. Probab. Theory Related Fields 146 (1–2) (2010) 223–265.
  • [43] O. C. Martin, R. Monasson and R. Zecchina. Statistical mechanics methods and phase transitions in optimization problems. Theoret. Comput. Sci. 265 (1–2) (2001) 3–67.
  • [44] F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case. Comm. Math. Phys. 161 (3) (1994) 487–514.
  • [45] P. Mathieu. Convergence to equilibrium for spin glasses. Comm. Math. Phys. 215 (1) (2000) 57–68.
  • [46] P. Mathieu and J. C. Mourrat. Aging of asymmetric dynamics on the random energy model. Probab. Theory Related Fields 161 (1–2) (2015) 351–427.
  • [47] M. Mézard and A. Montanari. Information, Physics, and Computation. Oxford University Press, New York, NY, USA, 2009.
  • [48] M. Mézard, G. Parisi and M. Angel Virasoro. Spin Glass Theory and Beyond, 9. World Scientific, Singapore, 1987.
  • [49] D. W. Stroock and B. Zegarliński. The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition. Comm. Math. Phys. 144 (2) (1992) 303–323.
  • [50] E. Subag. The complexity of spherical $p$-spin models – a second moment approach. Ann. Probab. (2015).
  • [51] E. Subag. The geometry of the gibbs measure of pure spherical spin glasses. Inventiones Mathematicae (2017) 1–75.
  • [52] E. Subag and O. Zeitouni. The extremal process of critical points of the pure $p$-spin spherical spin glass model. Probab. Theory Related Fields.
  • [53] M. Talagrand. Free energy of the spherical mean field model. Probab. Theory Related Fields 134 (3) (2006) 339–382.