Open Access
February 2018 Quantitative homogenization of degenerate random environments
Arianna Giunti, Jean-Christophe Mourrat
Ann. Inst. H. Poincaré Probab. Statist. 54(1): 22-50 (February 2018). DOI: 10.1214/16-AIHP793

Abstract

We study discrete linear divergence-form operators with random coefficients, also known as random conductance models. We assume that the conductances are bounded, independent and stationary; the law of a conductance may depend on the orientation of the associated edge. We give a simple necessary and sufficient condition for the relaxation of the environment seen by the particle to be diffusive, in the sense of every polynomial moment. As a consequence, we derive polynomial moment estimates on the corrector.

Nous étudions des opérateurs linéaires discrets sous forme divergence à coefficients aléatoires, aussi appelés modèles de conductances aléatoires. Nous supposons que les conductances sont bornées, indépendantes et stationnaires ; la loi d’une conductance peut dépendre de l’orientation de l’arète associée. Nous donnons une condition nécessaire et suffisante simple pour que la relaxation de l’environnement vu par la particule soit diffusive, au sens de tous les moments polynomiaux. Comme conséquence, nous estimons les moments polynomiaux du correcteur.

Citation

Download Citation

Arianna Giunti. Jean-Christophe Mourrat. "Quantitative homogenization of degenerate random environments." Ann. Inst. H. Poincaré Probab. Statist. 54 (1) 22 - 50, February 2018. https://doi.org/10.1214/16-AIHP793

Information

Received: 5 March 2016; Revised: 7 September 2016; Accepted: 12 September 2016; Published: February 2018
First available in Project Euclid: 19 February 2018

zbMATH: 06880044
MathSciNet: MR3765879
Digital Object Identifier: 10.1214/16-AIHP793

Subjects:
Primary: 35B27 , 35K65 , 60K37

Keywords: Corrector estimate , Environment viewed by the particle , Mixing of Markov chains , Quantitative homogenization

Rights: Copyright © 2018 Institut Henri Poincaré

Vol.54 • No. 1 • February 2018
Back to Top