Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

One-dimensional long-range diffusion-limited aggregation III – The limit aggregate

Gideon Amir

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper we study the structure of the limit aggregate $A_{\infty}=\bigcup_{n\geq0}A_{n}$ of the one-dimensional long range diffusion limited aggregation process defined in (Ann. Probab. 44 (2016) 3546–3579). We show (under some regularity conditions) that for walks with finite third moment $A_{\infty}$ has renewal structure and positive density, while for walks with finite variance the renewal structure no longer exists and $A_{\infty}$ has 0 density. We define a tree structure on the aggregates and show some results on the degrees and number of ends of these random trees. We introduce a new “harmonic competition” model where different colours compete for harmonic measure, and show how the tree structure is related to coexistence in this model.

Résumé

Nous étudions la structure de l’agrégat limite $A_{\infty}=\bigcup_{n\geq0}A_{n}$ du DLA en dimension 1 avec longue portée, tel qu’introduit dens (Ann. Probab. 44 (2016) 3546–3579). Nous montrons (sous des hypothèses de régularité) que pour des marches aléatoires admettant un moment d’ordre 3, $A_{\infty}$ a une structure de renouvellement et une densité positive, tandis que pour les marches ayant seulement une variance finie, la structure de renouvellement disparaît et la densité est nulle. Nous définissions une structure arborescente sur l’agrégat et montrons quelques résultats sur les degrés et le nombre de bouts de ces arbres aléatoires. Nous introduisons un nouveau modèle de « compétition harmonique » entre des particules de couleurs différentes, et nous montrons que la structure d’arbre est reliée au problème de coexistence dans ce modèle.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 4 (2017), 1513-1527.

Dates
Received: 6 April 2015
Revised: 11 November 2015
Accepted: 15 November 2015
First available in Project Euclid: 27 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1511773716

Digital Object Identifier
doi:10.1214/15-AIHP731

Mathematical Reviews number (MathSciNet)
MR3729626

Zentralblatt MATH identifier
1384.82009

Subjects
Primary: 82C24: Interface problems; diffusion-limited aggregation
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 97K50: Probability theory 97K60: Distributions and stochastic processes

Keywords
Diffusion limited aggregation DLA Random walk Harmonic measure Phase transition Renewal structure

Citation

Amir, Gideon. One-dimensional long-range diffusion-limited aggregation III – The limit aggregate. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 4, 1513--1527. doi:10.1214/15-AIHP731. https://projecteuclid.org/euclid.aihp/1511773716


Export citation

References

  • [1] G. Amir, O. Angel, I. Benjamini and G. Kozma. One-dimensional long-range diffusion-limited aggregation I. Ann. Probab. 44 (5) (2016) 3546–3579.
  • [2] G. Amir, O. Angel and G. Kozma. One-dimensional long-range diffusion limited aggregation II: The transient case. Ann. Appl. Probab. 27 (3) (2017) 1886–1922.
  • [3] R. Durrett. Probability: Theory and Examples. Cambridge University Press, Cambridge, 2010.
  • [4] F. Spitzer. Principles of Random Walks, 2nd edition. Graduate Texts in Mathematics 34. Springer-Verlag, New York, 1976.
  • [5] D. Williams. Probability with Martingales. Cambridge University Press, Cambridge, 1991.
  • [6] T. A. Witten and L. M. Sander. Diffusion-limited aggregation. Phys. Rev. B (3) 27 (9) (1983) 5686–5697.