Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Hierarchical pinning model in correlated random environment

Quentin Berger and Fabio Lucio Toninelli

Full-text: Open access


We consider the hierarchical disordered pinning model studied in (J. Statist. Phys. 66 (1992) 1189–1213), which exhibits a localization/delocalization phase transition. In the case where the disorder is i.i.d. (independent and identically distributed), the question of relevance/irrelevance of disorder (i.e. whether disorder changes or not the critical properties with respect to the homogeneous case) is by now mathematically rather well understood (Probab. Theory Related Fields 148 (2010) 159–175, Pure Appl. Math. 63 (2010) 233–265). Here we consider the case where randomness is spatially correlated and correlations respect the hierarchical structure of the model; in the non-hierarchical model our choice would correspond to a power-law decay of correlations.

In terms of the critical exponent of the homogeneous model and of the correlation decay exponent, we identify three regions. In the first one (non-summable correlations) the phase transition disappears. In the second one (correlations decaying fast enough) the system behaves essentially like in the i.i.d. setting and the relevance/irrelevance criterion is not modified. Finally, there is a region where the presence of correlations changes the critical properties of the annealed system.


Nous considérons le modèle hiérarchique d’accrochage sur une ligne de défaut inhomogène étudié dans (J. Statist. Phys. 66 (1992) 1189–1213), qui possède une transition de phase de localisation/délocalisation. Dans le cas où le désordre est i.i.d. (indépendant et identiquement distribué), la question de pertinence/non pertinence du désordre (i.e. de savoir si le désordre change ou non les propriétés critiques du système par rapport au cas homogène) est maintenant bien comprise d’un point de vue mathématique (Probab. Theory Related Fields 148 (2010) 159–175, Pure Appl. Math. 63 (2010) 233–265). Nous considérons ici le cas où le désordre est corrélé spatialement, et où les corrélations respectent la structure hiérarchique du modèle; dans le cadre non-hiérarchique, notre choix correspondrait à une décroissance en loi de puissance des corrélations.

En termes d’exposant critique du modèle homogène et d’exposant de décroissance des corrélations, nous identifions trois régions. Dans la première (corrélations non sommables), la transition de phase disparaît. Dans la deuxième (corrélations décroissant suffisamment vite), le système se comporte essentiellement comme dans le cas i.i.d., et le critère de pertinence/non pertinence du désordre n’est pas modifié. Enfin, il existe une région où le présence de corrélations change les propriétés critiques du système annealed.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 49, Number 3 (2013), 781-816.

First available in Project Euclid: 2 July 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.) 82D60: Polymers 60K37: Processes in random environments

Pinning models Polymer Disordered models Harris criterion Critical phenomena Correlation


Berger, Quentin; Toninelli, Fabio Lucio. Hierarchical pinning model in correlated random environment. Ann. Inst. H. Poincaré Probab. Statist. 49 (2013), no. 3, 781--816. doi:10.1214/12-AIHP493.

Export citation


  • [1] K. S. Alexander. The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279 (2008) 117–146.
  • [2] K. S. Alexander and N. Zygouras. Quenched and annealed critical points in polymer pinning models. Commun. Math. Phys. 291 (2009) 659–689.
  • [3] Q. Berger and H. Lacoin. Sharp critical behavior for random pinning model with correlated environment. Stochastic Process. Appl. 122 (2012) 1397–1436.
  • [4] P. M. Bleher. The renormalization group on hierarchical lattices. In Stochastic Methods in Mathematics and Physics (Karpacz, 1988) 171–201. World Sci. Publ., Teaneck, NJ, 1989.
  • [5] D. Cheliotis and F. den Hollander. Variational characterization of the critical curve for pinning of random polymers. Ann. Probab. 41 (2013) 1767–1805.
  • [6] P. Collet, J.-P. Eckmann, V. Glaser and A. Martin. Study of the iterations of a mapping associated to a spin glass model. Commun. Math. Phys. 94 (1984) 353–370.
  • [7] B. Derrida and E. Gardner. Renormalization group study of a disordered model. J. Phys. A 17 (1984) 3223–3236.
  • [8] B. Derrida, G. Giacomin, H. Lacoin and F. L. Toninelli. Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys. 287 (2009) 867–887.
  • [9] B. Derrida, V. Hakim and J. Vannimenus. Effect of disorder on two-dimensional wetting. J. Statist. Phys. 66 (1992) 1189–1213.
  • [10] F. J. Dyson. Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12 (1969) 91–107.
  • [11] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007.
  • [12] G. Giacomin. Renewal convergence rates and correlation decay for homogeneous pinning models. Electron. J. Probab. 13 (2008) 513–529.
  • [13] G. Giacomin. Disorder and Critical Phenomena Through Basic Probability Models. Lecture Notes in Mathematics 2025. Springer, Berlin, 2011.
  • [14] G. Giacomin, H. Lacoin and F. Toninelli. Hierarchical pinning model, quadratic maps and quenched disorder. Probab. Theory Related Fields 148 (2010) 159–175.
  • [15] G. Giacomin, H. Lacoin and F. L. Toninelli. Marginal relevance of disorder for pinning models. Commun. Pure Appl. Math. 63 (2010) 233–265.
  • [16] G. Giacomin, H. Lacoin and F. L. Toninelli. Disorder relevance at marginality and critical point shift. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 148–175.
  • [17] G. Giacomin and F. L. Toninelli. Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266 (2006) 1–16.
  • [18] A. B. Harris. Effect of random defects on the critical behaviour of ising models. J. Phys. C 7 (1974) 1671–1692.
  • [19] H. Lacoin. The martingale approach to disorder irrelevance for pinning models. Electron. Commun. Probab. 15 (2010) 418–427.
  • [20] H. Lacoin and F. L. Toninelli. A smoothing inequality for hierarchical pinning models. In Spin Glasses: Statics and Dynamics 271–278. A. Boutet de Monvel and A. Bovier (eds.). Progress in Probability 62. Birkhäuser Verlag, Basel, 2009.
  • [21] J. Poisat. On quenched and annealed critical curves of random pinning model with finite range correlations. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013) 456–482.
  • [22] F. L. Toninelli. Critical properties and finite-size estimates for the depinning transition of directed random polymers. J. Statist. Phys. 126 (2007) 1025–1044.
  • [23] F. L. Toninelli. A replica-coupling approach to disordered pinning models. Commun. Math. Phys. 280 (2008) 389–401.
  • [24] A. Weinrib and B. I. Halperin. Critical phenomena in systems with long-range-correlated quenched disorder. Phys. Rev. B 27 (1983) 413–427.