Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Annealed upper tails for the energy of a charged polymer

Amine Asselah

Full-text: Open access

Abstract

We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider annealed estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.

Résumé

Nous étudions les grandes déviations pour l’énergie d’un polymère. L’espace est discret, et le polymère est une chaine linéaire de n monomères associés à des charges. Nous supposons que deux charges n’intéragissent que lorsqu’elles occupent le même site de ℤd. Nous considérons le cas où les deux aléas, valeurs des charges et positions des monomères, sont moyennés, et où la dimension de l’espace est 3 ou plus. Nous obtenons un principe de grande déviations, et pour certaines distributions de charges, la fonctionnelle de taux est explicite.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 47, Number 1 (2011), 80-110.

Dates
First available in Project Euclid: 4 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1294170231

Digital Object Identifier
doi:10.1214/09-AIHP355

Mathematical Reviews number (MathSciNet)
MR2779398

Zentralblatt MATH identifier
1229.60105

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35] 60J25: Continuous-time Markov processes on general state spaces

Keywords
Random polymer Large deviations Random walk in random scenery Self-intersection local times

Citation

Asselah, Amine. Annealed upper tails for the energy of a charged polymer. Ann. Inst. H. Poincaré Probab. Statist. 47 (2011), no. 1, 80--110. doi:10.1214/09-AIHP355. https://projecteuclid.org/euclid.aihp/1294170231


Export citation

References

  • [1] A. Asselah. Annealed lower tails for the energy of a charged polymer. J. Stat. Phys. To appear.
  • [2] A. Asselah. Shape transition under excess self-intersection for transient random walk. Ann. Henri Poincaré. To appear.
  • [3] A. Asselah. Large deviations principle for self-intersection local times for simple random walk in dimension d > 4. ALEA 6 (2009) 281–322.
  • [4] A. Asselah. Large deviations for the self-intersection times for simple random walk in dimension 3. Probab. Theory Related Fields 141 (2008) 19–45.
  • [5] A. Asselah and F. Castell. Random walk in random scenery and self-intersection local times in dimensions d ≥ 5. Probab. Theory Related Fields 138 (2007) 1–32.
  • [6] A. Asselah and F. Castell. A note on random walk in random scenery. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 163–173.
  • [7] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. AMS, Providence, RI, 2009.
  • [8] X. Chen. Limit laws for the energy of a charged polymer. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 638–672.
  • [9] X. Chen and D. Khoshnevisan. From charged polymers to random walk in random scenery. In Proceedings of the Third Erich L. Lehmann Symposium. IMS Lecture Notes—Monograph Series 57 237–251, 2009.
  • [10] B. Derrida, R. B. Griffith and P. G. Higgs. A model of directed walks with random interactions. Europhys. Lett. 18 (1992) 361–366.
  • [11] N. Gantert, R. van der Hofstad and W. König. Deviations of a random walk in a random scenery with stretched exponential tails. Stochastic Process. Appl. 116 (2006) 480–492.
  • [12] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007.
  • [13] R. van der Hofstad and W. König. A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915–944.
  • [14] F. den Hollander. Random Polymers. Lecture Notes in Mathematics 1974. Springer, Berlin, 2009.
  • [15] G. Lawler, M. Bramson and D. Griffeath. Internal diffusion limited aggregation. Ann. Probab. 20 (1992) 2117–2140.
  • [16] A. Nagaev. Integral limit theorems for large deviations when Cramer’s condition is not fulfilled. Teor. Verojatnost. i Primenen. 14 (1969) 51–64, 203–216 (in Russian).
  • [17] S. Nagaev. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979) 745–789.