Algebraic & Geometric Topology

The absolute gradings on embedded contact homology and Seiberg–Witten Floer cohomology

Daniel Cristofaro-Gardiner

Full-text: Open access

Abstract

Let Y be a closed connected contact 3–manifold. In [Geom. Topol. 14 (2010) 2497–2581], Taubes defines an isomorphism between the embedded contact homology (ECH) of Y and its Seiberg–Witten Floer cohomology. Both the ECH of Y and the Seiberg–Witten Floer cohomology of Y admit absolute gradings by homotopy classes of oriented 2–plane fields. We show that Taubes’ isomorphism preserves these gradings, which implies that the absolute grading on ECH is a topological invariant. To do this, we prove another result relating the expected dimension of any component of the Seiberg–Witten moduli space over a completed connected symplectic cobordism to the ECH index of a corresponding homology class.

Article information

Source
Algebr. Geom. Topol., Volume 13, Number 4 (2013), 2239-2260.

Dates
Received: 15 September 2012
Revised: 26 February 2013
Accepted: 3 March 2013
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715637

Digital Object Identifier
doi:10.2140/agt.2013.13.2239

Mathematical Reviews number (MathSciNet)
MR3073915

Zentralblatt MATH identifier
1279.53080

Subjects
Primary: 53D40: Floer homology and cohomology, symplectic aspects

Keywords
embedded contact homology Seiberg–Witten theory absolute gradings

Citation

Cristofaro-Gardiner, Daniel. The absolute gradings on embedded contact homology and Seiberg–Witten Floer cohomology. Algebr. Geom. Topol. 13 (2013), no. 4, 2239--2260. doi:10.2140/agt.2013.13.2239. https://projecteuclid.org/euclid.agt/1513715637


Export citation

References

  • J B Etnyre, Legendrian and transversal knots, from: “Handbook of knot theory”, (W Menasco, M Thistlethwaite, editors), Elsevier B. V., Amsterdam (2005) 105–185
  • J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31–39
  • H Geiges, Contact geometry, from: “Handbook of differential geometry, Vol. II”, (F J E Dillen, L C A Verstraelen, editors), Elsevier/North-Holland, Amsterdam (2006) 315–382
  • M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313–361
  • M Hutchings, The embedded contact homology index revisited, from: “New perspectives and challenges in symplectic field theory”, (M Abreu, F Lalonde, L Polterovich, editors), CRM Proc. Lecture Notes 49, Amer. Math. Soc., Providence, RI (2009) 263–297
  • M Hutchings, Taubes's proof of the Weinstein conjecture in dimension three, Bull. Amer. Math. Soc. 47 (2010) 73–125
  • M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions II
  • M Hutchings, C H Taubes, An introduction to the Seiberg–Witten equations on symplectic manifolds, from: “Symplectic geometry and topology”, (Y Eliashberg, L Traynor, editors), IAS/Park City Math. Ser. 7, Amer. Math. Soc., Providence, RI (1999) 103–142
  • M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, I, J. Symplectic Geom. 5 (2007) 43–137
  • M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29–133
  • M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions I, Math. Res. Lett. 18 (2011) 295–313
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Mathematical Monographs 10, Cambridge Univ. Press (2007)
  • C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117–2202
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010) 2497–2581
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010) 2583–2720
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721–2817