Algebraic & Geometric Topology

Algebraic independence of generalized MMM–classes

Johannes Ebert

Full-text: Open access

Abstract

The generalized Miller–Morita–Mumford classes (MMM classes) of a smooth oriented manifold bundle are defined as the image of the characteristic classes of the vertical tangent bundle under the Gysin homomorphism. We show that if the dimension of the manifold is even, then all MMM–classes in rational cohomology are nonzero for some bundle. In odd dimensions, this is also true with one exception: the MMM–class associated with the Hirzebruch –class is always zero. Moreover, we show that polynomials in the MMM–classes are also nonzero. We also show a similar result for holomorphic fibre bundles and for unoriented bundles.

Article information

Source
Algebr. Geom. Topol., Volume 11, Number 1 (2011), 69-105.

Dates
Received: 22 March 2010
Revised: 30 June 2010
Accepted: 23 September 2010
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715181

Digital Object Identifier
doi:10.2140/agt.2011.11.69

Mathematical Reviews number (MathSciNet)
MR2764037

Zentralblatt MATH identifier
1210.55012

Subjects
Primary: 55R40: Homology of classifying spaces, characteristic classes [See also 57Txx, 57R20]

Keywords
characteristic class manifold bundle Miller–Morita–Mumford class

Citation

Ebert, Johannes. Algebraic independence of generalized MMM–classes. Algebr. Geom. Topol. 11 (2011), no. 1, 69--105. doi:10.2140/agt.2011.11.69. https://projecteuclid.org/euclid.agt/1513715181


Export citation

References

  • T Akita, N Kawazumi, T Uemura, Periodic surface automorphisms and algebraic independence of Morita–Mumford classes, J. Pure Appl. Algebra 160 (2001) 1–11
  • M F Atiyah, The signature of fibre-bundles, from: “Global Analysis (Papers in Honor of K Kodaira)”, Univ. Tokyo Press, Tokyo (1969) 73–84
  • M F Atiyah, R Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1–28
  • M F Atiyah, I M Singer, The index of elliptic operators. IV, Ann. of Math. $(2)$ 93 (1971) 119–138
  • J C Becker, D H Gottlieb, The transfer map and fiber bundles, Topology 14 (1975) 1–12
  • A Borel, F Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958) 458–538
  • R O Burdick, Oriented manifolds fibered over the circle, Proc. Amer. Math. Soc. 17 (1966) 449–452
  • P E Conner, The bordism class of a bundle space, Michigan Math. J. 14 (1967) 289–303
  • J L Dupont, Curvature and characteristic classes, Lecture Notes in Math. 640, Springer, Berlin (1978)
  • J Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, to appear in J. Reine Angew. Math.
  • J Ebert, J Giansiracusa, Pontrjagin–Thom maps and the homology of the moduli stack of stable curves, to appear in Math. Ann.
  • J Ebert, O Randal-Williams, On the divisibility of characteristic classes of non-oriented surface bundles, Topology Appl. 156 (2008) 246–250
  • S Führing, $\cp^2$–Bündel und Bordismus, Diplomarbeit, LMU München (2008)
  • S Galatius, O Randal-Williams, Monoids of moduli spaces of manifolds, Geom. Topol. 14 (2010) 1243–1302
  • S Galatius, U Tillmann, I Madsen, M Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009) 195–239
  • J Giansiracusa, The diffeomorphism group of a $K3$ surface and Nielsen realization, J. Lond. Math. Soc. $(2)$ 79 (2009) 701–718
  • M W Hirsch, Differential topology, Graduate Texts in Math. 33, Springer-Verlag, New York (1976)
  • F Hirzebruch, T Berger, R Jung, Manifolds and modular forms, Aspects of Math. E20, Friedr. Vieweg & Sohn, Braunschweig (1992) With appendices by N-P Skoruppa and by P Baum
  • D Husemoller, Fibre bundles, third edition, Graduate Texts in Math. 20, Springer, New York (1994)
  • K Jänich, On invariants with the Novikov additive property, Math. Ann. 184 (1969) 65–77
  • F Kirwan, On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles, Ark. Mat. 24 (1986) 221–275
  • W Lück, A Ranicki, Surgery obstructions of fibre bundles, J. Pure Appl. Algebra 81 (1992) 139–189
  • I Madsen, U Tillmann, The stable mapping class group and $Q(\mathbb C \mathrm{P}\sp \infty\sb +)$, Invent. Math. 145 (2001) 509–544
  • I Madsen, M Weiss, The stable moduli space of Riemann surfaces: Mumford's conjecture, Ann. of Math. $(2)$ 165 (2007) 843–941
  • W Meyer, Die Signatur von Faserbündeln und lokalen Koeffizientensystemen, Bonner Math. Schriften 53 (1972)
  • E Y Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986) 1–14
  • J W Milnor, J D Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton Univ. Press (1974)
  • S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551–577
  • S Morita, Geometry of characteristic classes, Transl. of Math. Monogr. 199, Amer. Math. Soc. (2001) Translated from the 1999 Japanese original, Iwanami Ser. in Modern Math.
  • D Mumford, Towards an enumerative geometry of the moduli space of curves, from: “Arithmetic and geometry, Vol. II”, (M Artin, J Tate, editors), Progr. Math. 36, Birkhäuser, Boston (1983) 271–328
  • M Nakaoka, Homology of the infinite symmetric group, Ann. of Math. $(2)$ 73 (1961) 229–257
  • W D Neumann, Fibering over the circle within a bordism class, Math. Ann. 192 (1971) 191–192
  • G Segal, The topology of spaces of rational functions, Acta Math. 143 (1979) 39–72
  • R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17–86
  • M Vigué-Poirrier, D Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976) 633–644