Algebraic & Geometric Topology

L'espace des sous-groupes fermés de $\mathbb{R} \times \mathbb{Z}$

Thomas Haettel

Full-text: Open access

Abstract

The space of closed subgroups of a locally compact topological group is endowed with a natural topology, called the Chabauty topology. We completely describe the space of closed subgroups of the group × (and of its dual ×), which is highly nontrivial : for example, its fundamental group contains the fundamental group of the Hawaiian earrings, hence is uncountable.

L’espace des sous-groupes fermés d’un groupe topologique localement compact est muni d’une topologie naturelle, appelée topologie de Chabauty. Nous décrivons complètement l’espace des sous-groupes fermés du groupe × (et de son dual ×), lequel est hautement non trivial : par exemple, son groupe fondamental contient le groupe fondamental des anneaux Hawaïens, et est donc non dénombrable.

Article information

Source
Algebr. Geom. Topol., Volume 10, Number 3 (2010), 1395-1415.

Dates
Received: 19 December 2008
Revised: 20 May 2009
Accepted: 8 July 2009
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715140

Digital Object Identifier
doi:10.2140/agt.2010.10.1395

Mathematical Reviews number (MathSciNet)
MR2661531

Zentralblatt MATH identifier
1204.22003

Subjects
Primary: 22B99: None of the above, but in this section 22D05: General properties and structure of locally compact groups
Secondary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 57M07: Topological methods in group theory

Keywords
Chabauty space of closed subgroups Hawaiian earrings espace des sous-groupes fermés

Citation

Haettel, Thomas. L'espace des sous-groupes fermés de $\mathbb{R} \times \mathbb{Z}$. Algebr. Geom. Topol. 10 (2010), no. 3, 1395--1415. doi:10.2140/agt.2010.10.1395. https://projecteuclid.org/euclid.agt/1513715140


Export citation

References

  • N Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitre 10. Profondeur, régularité, dualité, Masson, Paris (1998)
  • M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer, Berlin (1999)
  • M R Bridson, P de la Harpe, V Kleptsyn, The Chabauty space of closed subgroups of the three-dimensional Heisenberg group, Pacific J. Math. 240 (2009) 1–48
  • P Buser, H Karcher, Gromov's almost flat manifolds, Astérisque 81, Société Mathématique de France, Paris (1981)
  • R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: “Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)”, (D B A Epstein, editor), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3–92
  • J W Cannon, G R Conner, The combinatorial structure of the Hawaiian earring group, Topology Appl. 106 (2000) 225–271
  • C Chabauty, Limite d'ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950) 143–151
  • Y de Cornulier, Pontryagin duality and the Chabauty space of locally compact abelian groups, Article en préparation
  • G Courtois, F Dal'Bo, F Paulin, Sur la dynamique des groupes de matrices et applications arithmétiques, Éditions de l'École Polytechnique, Palaiseau (2007) Papers from the Mathematical Days X-UPS held at the École Polytechnique, Palaiseau, May 9–10, 2007
  • J Dugundji, Topology, Allyn and Bacon, Boston (1966)
  • P de la Harpe, Spaces of closed subgroups of locally compact groups
  • B Kloeckner, The space of closed subgroups of $\mathbb R\sp n$ is stratified and simply connected, J. Topol. 2 (2009) 570–588
  • L S Pontryagin, Topological groups, Gordon and Breach Science Publ., New York (1966) Translated from the second Russian edition by A Brown
  • I Pourezza, J Hubbard, The space of closed subgroups of ${\bf R}\sp{2}$, Topology 18 (1979) 143–146
  • J-P Serre, Cours d'arithmétique, second edition, Presses Universitaires de France, Paris (1977)
  • B de Smit, The fundamental group of the Hawaiian earring is not free, Internat. J. Algebra Comput. 2 (1992) 33–37