Arkiv för Matematik

A large data existence result for the stationary Boltzmann equation in a cylindrical geometry

Leif Arkeryd and Anne Nouri

Full-text: Open access

Abstract

AnL1-existence theorem is proved for the nonlinear stationary Boltzmann equation with hard forces and no small velocity truncation—only the Grad angular cut-off-in a setting between two coaxial rotating cylinders when the indata are given on the cylinders.

Article information

Source
Ark. Mat., Volume 43, Number 1 (2005), 29-50.

Dates
Received: 12 June 2003
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898867

Digital Object Identifier
doi:10.1007/BF02383609

Mathematical Reviews number (MathSciNet)
MR2134697

Zentralblatt MATH identifier
1099.35017

Rights
2005 © Institut Mittag-Leffler

Citation

Arkeryd, Leif; Nouri, Anne. A large data existence result for the stationary Boltzmann equation in a cylindrical geometry. Ark. Mat. 43 (2005), no. 1, 29--50. doi:10.1007/BF02383609. https://projecteuclid.org/euclid.afm/1485898867


Export citation

References

  • Arkeryd, L. and Cercignani, C., On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation, Comm. Partial Differential Equations 14 (1989), 1071–1089.
  • Arkeryd, L. and Nouri, A., The stationary Boltzmann equation in the slab with given weighted mass for hard and soft forces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1998), 533–556.
  • Arkeryd, L. and Nouri, A., On the stationary Povzner equation in Rn, J. Math. Kyoto Univ. 39 (1999), 115–153.
  • Arkeryd, L. and Nouri, A., L.1 solutions to the stationary Boltzmann equation in a slab, Ann. Fac. Sci. Toulouse Math. 9 (2000), 375–413.
  • Arkeryd, L. and Nouri, A., On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model, J. Statist. Phys. 99 (2000), 993–1019.
  • Arkeryd, L. and Nouri, A., The stationary Boltzmann equation in Rn with given indata, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (2002), 359–385.
  • Arkeryd, L. and Nouri, A., The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated Lq-solutions and hydrodynamic limits, to appear in J. Statist. Phys.
  • Cercignani, C., Illner, R. and Pulvirenti, M., The Mathematical Theory of Dilute Gases, Applied Math. Sci., 106, Springer-Verlag, New York, 1994.
  • DiPerna, R. J. and Lions, P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130 (1989), 321–366.
  • Golse, F., Lions, P.-L., Perthame, B. and Sentis, R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), 110–125.
  • Grad, H., High frequency sound recording according to Boltzmann equation, SIAM J. Appl. Math. 14 (1966), 935–955.
  • Guiraud, J.-P., Problème aux limites intérieur pour l'équation de Boltzmann en régime stationaire, faiblement non linéaire, J. Mécanique 11 (1972), 183–231.
  • Heintz, A., Solvability of a boundary problem for the non linear Boltzmann equation in a bounded domain, in Molecular Gas Dynamics, Aerodynamics of Rarefied Gases 10, pp. 16–24, Leningrad, 1980 (Russian).
  • Maslova, N., Non Linear Evolution Equations, Kinetic Approach, Series on Advances in Mathematics for Applied Sciences 10, World Scientific, 1993.
  • Panferov, V., On the existence of stationary solutions to the Povzner equation in a bounded domain, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci.
  • Sone, Y., Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002.
  • Ukai, S. and Asano, K., Steady solutions of the Boltzmann equation for a gas flow past an obstacle. I. Existence, Arch. Rational Mech. Anal. 84 (1983), 249–291.