Arkiv för Matematik

  • Ark. Mat.
  • Volume 41, Number 2 (2003), 363-374.

Banach spaces not containing l1

Jorge Mujica

Full-text: Open access

Abstract

We show that if E is a complex Banach space which contains no subspace isomorphic to l1, then each infinite dimensional subspace of E′ contains a normalized sequence which converges to zero for the weak star topology.

Dedication

Dedicated to the memory of Klaus Floret (1941–2002).

Article information

Source
Ark. Mat., Volume 41, Number 2 (2003), 363-374.

Dates
Received: 18 June 2002
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898810

Digital Object Identifier
doi:10.1007/BF02390820

Mathematical Reviews number (MathSciNet)
MR2011926

Zentralblatt MATH identifier
1039.46014

Rights
2003 © Institut Mittag-Leffler

Citation

Mujica, Jorge. Banach spaces not containing l 1. Ark. Mat. 41 (2003), no. 2, 363--374. doi:10.1007/BF02390820. https://projecteuclid.org/euclid.afm/1485898810


Export citation

References

  • Aron, R., Diestel, J. and Rajappa, A., Weakly continuous functions on Banach spaces containing l1, in Banach Spaces (Columbia, Mo., 1984) (Kalton, N. and Saab, E. eds.), Lecture Notes in Math. 1166, pp. 1–3. Springer-Verlag, Berlin-Heidelberg, 1985.
  • Diestel, J., A survey of results related to the Duford-Pettis property, in Integration, Topology and Geometry in Linear Spaces (Chapel Hill, N. C. 1979) (Graves, W., ed.), Contemporary Math. 2, pp. 15–60, Amer. Math. Soc., Providence, R. I., 1980.
  • Diestel, J., Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
  • Dor, L., On sequences spanning a complex l1 space, Proc. Amer. Math. Soc. 47 (1975), 461–465.
  • Fakhoury, H., Sur les espaces de Banach ne contenant pas l1 (N), Math. Scand. 41 (1977), 277–289.
  • Gowers, W., A Banach space not containing c0, l1 or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), 407–420.
  • Hagler, J. and Johnson, W., On Banach spaces whose dual balls are not weak sequentially compact, Israel J. Math. 28 (1977), 325–330.
  • Johnson, W. and Rosenthal, H., On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92.
  • Josefson, B., Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat. 13 (1975), 79–89.
  • Mujica, J., Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid 10 (1997), 299–330.
  • Nissenzweig, A., w* sequential convergence, Israel J. Math. 22 (1975), 266–272.
  • Pelczyński, A., Some problems on bases in Banach and Fréchet spaces, Israel J. Math. 2 (1964), 132–138.
  • Pelczyński, A., On Banach spaces containing L1 (μ), Studia Math. 30 (1968), 231–246.
  • Pethe, P. and Thakare, N., Note on Dunford-Pettis property and Schur property, Indiana Univ. Math. J. 27 (1978), 91–92.
  • Rosenthal, H., On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp (μ) to Lr (v), J. Funct. Anal. 4 (1969), 176–214.
  • Rosenthal, H., A characterization of Banach spaces containing l1, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.
  • Rosenthal, H., Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803–831.