Arkiv för Matematik

  • Ark. Mat.
  • Volume 34, Number 2 (1996), 231-244.

Generalized Hardy inequalities and pseudocontinuable functions

Konstatin M. Dyakonov

Full-text: Open access

Abstract

Given positive integers n1< n2<... we show that the Hardy-type inequality $\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f(n_k )} \right|}}{k}} \leqslant const\left\| f \right\|1$ holds true for all fH1, provided that the nk's, satisfy an appropriate (and indispensable) regularity condition. On the other hand, we exhibit inifinite-dimensional subspaces of H1 for whose elements the above inequality is always valid, no additional hypotheses being imposed. In conclusion, we extend a result of Douglas, Shapiro and Shields on the cyclicity of lacunary series for the backward shift operator.

Note

Supported in part by Grants R2D000 and R2D300 from the International Science Foundation and by a grant from Pro Mathematica (France).

Article information

Source
Ark. Mat. Volume 34, Number 2 (1996), 231-244.

Dates
Received: 10 April 1995
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898513

Digital Object Identifier
doi:10.1007/BF02559546

Zentralblatt MATH identifier
0868.30034

Rights
1996 © Institut Mittag-Leffler

Citation

Dyakonov, Konstatin M. Generalized Hardy inequalities and pseudocontinuable functions. Ark. Mat. 34 (1996), no. 2, 231--244. doi:10.1007/BF02559546. https://projecteuclid.org/euclid.afm/1485898513.


Export citation

References

  • [A] Ahern, P. R., The mean modulus and the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), 311–348.
  • [AS] Anderson, J. M. and Shields, A. L., Coefficient multipliers, of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255–265.
  • [DSS] Douglas, R. G., Shapiro, H. S. and Shields, A. L., Cyclic vectors and invariant subspaces of the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), 37–76.
  • [D1] Dyakonov, K. M., Kernels of Toeplitz operators, smooth functions, and Bernstein-type inequalities, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 201 (1992), 5–21 (Russian). English transl.: J. Math. Sci. 78 (1996), 131–141.
  • [D2] Dyakonov, K. M., Smooth functions in the range of a Hankel operator, Indiana Univ. Math. J. 43 (1994), 805–838.
  • [D3] Dyakonov, K. M., Moment problems for bounded functions, Comm. Anal. Geom. 2 (1994), 533–562.
  • [F] Fournier, J. J. F., On a theorem of Paley and the Littlewood conjecture, Ark. Mat. 17 (1979), 199–216.
  • [G] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.
  • [GM] Graham, C. C. and McGehee, O. C., Essays in Commutative Harmonic Analysis, Springer-Verlag, Berlin-Heidelberg, 1979.
  • [H] Hoffman, K., Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
  • [MPS] McGehee, O. C., Pigno, L. and Smith, B., Hardy's inequality and the L1 norm of exponential sums, Ann. of Math. 113 (1981), 613–618.
  • [NS] Newman, D. J. and Shapiro, H. S., The Taylor coefficients of inner functions, Michigan Math. J. 9 (1962), 249–255.
  • [N] Nikolskii, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin, 1975.
  • [SS] Sledd, W. T. and Stegenga, D. A., An H1 multiplier theorem, Ark. Mat. 19 (1981), 265–270.
  • [SZ] Stein, E. M. and Zygmund, A., Boundedness of translation invariant operators on Hölder spaces and Lp-spaces, Ann. of Math. 85 (1967), 337–349.
  • [V] Verbitskii, I. E., On Taylor coefficients and Lp-moduli of continuity of Blaschke products, Zap. Nauchn. Sem. Leningrad. Otdel. Mat., Inst. Steklov. (LOMI) 107 (1982), 27–35 (Russian). English transl.: J. Soviet Math. 36 (1987), 314–319.