Arkiv för Matematik

  • Ark. Mat.
  • Volume 12, Number 1-2 (1974), 181-201.

Removable singularities and condenser capacities

Lars Inge Hedberg

Full-text: Open access

Article information

Source
Ark. Mat., Volume 12, Number 1-2 (1974), 181-201.

Dates
Received: 29 November 1973
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896200

Digital Object Identifier
doi:10.1007/BF02384755

Mathematical Reviews number (MathSciNet)
MR361050

Zentralblatt MATH identifier
0297.30017

Rights
1974 © Institut Mittag-Leffler

Citation

Hedberg, Lars Inge. Removable singularities and condenser capacities. Ark. Mat. 12 (1974), no. 1-2, 181--201. doi:10.1007/BF02384755. https://projecteuclid.org/euclid.afm/1485896200


Export citation

References

  • Adams, D. R. and Meyers, N. G., Bessel potentials. Inclusion relations among classes of exceptional sets. Indiana Univ. Math. J. 22 (1973), 873–905.
  • Ahlfors, L., Conformal invariants: Topics in geometric function theory. Mc Graw-Hill 1973.
  • ——»- and Beurling, A., conformal invariants and function-theoretic null-sets. Acta Math. 83 (1950), 101–129.
  • Bagby, T., Quasi topologies and rational approximation. J. Functional Analysis 10 (1972), 259–268.
  • Bardet, J.-P. and Lelong-Ferrand, J., Relation entre le q-module et la p-capacité d’un condensateur Riemannien, C. R. Acad. Sci Paris 277 (1973), 835–838.
  • Carleson, L., Selected problems on exceptional sets, Van Nostrand, Princeton, N. J. (1967).
  • Deny, J. and Lions, J. L., Les espaces du type de Beppo Levi. Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 305–370.
  • Fuglede, B., Extremal length and functional completion. Acta Math. 98 (1957), 171–219.
  • Gehring, F. W., Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137–150.
  • Gončar, A. A., On the property of instability of harmonic capacity. Dokl. Akad. Nauk SSSR 165 (1965), 479–481. (Soviet Math. Dokl.) 6 (1965), 1458–1460.)
  • Harvey, R. and Polking, J. C., A notion of capacity which characterizes removable singularities. Trans. Amer. Math. Soc., 169 (1972) 183–195.
  • Hedberg, L. I., The Stone-Weierstrass theorem in certain Banach algebras of Fourier type. Ark. mat. 6 (1965), 77–102.
  • ——»-, The Stone-Weierstrass theorem in Lipschitz algebras. Ark. mat. 8 (1969), 63–72.
  • ——»-, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 163 (1972), 157–171.
  • ——»-, Non-linear potentials and approximation in the mean by analytic functions. Math. Z. 129 (1972), 299–319.
  • Hesse, J., A p-extremal length and p-capacity equality, to appear.
  • Lelong-Ferrand, J., Étude d’une classe d’applications liées à des homomorphismes d’algèbres de fonctions, et généralisant les quasi conformes. Duke Math. J. 40 (1973). 163–186.
  • Lewis, L. G., Quasiconformal mappings and Royden algebras in space. Trans. Amer. Math. Soc. 158 (1971), 481–492.
  • Marden, A. and Rodin, B., Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular radial slit mappings. Acta Math. 115 (1966), 237–269.
  • Maz’ja, V. G., On the continuity at a boundary point of the solution of quasi-linear elliptic equations (Russian.)Vestnik Leningrad. Univ. 25 no. 13 (1970), 42–55.
  • ——»- and Havin, V. P., Non-linear potential theory. (Russian.)Uspehi Mat. Nauk 26 no. 6 (1972), 67–138.
  • Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand. 26 (1970), 255–292.
  • Ohtsuka, M., Extremal length and precise functions in 3-space. Lecture notes, Hiroshima University (1973).
  • Polking, J. C., Approximation in Lp by solutions of elliptic partial differential equations. American J. Math. 94 (1972), 1231–1244.
  • Rodin, B. and Sario, L., Principal functions, Van Nostrand, Princeton, N. J., (1968).
  • Royden, H. L., On a class of null-bounded Riemann surfaces. Comment. Math. Helv. 34 (1960), 52–66.
  • Sario, L. and Nakai, M., Classification theory of Riemann surfaces, Springer-Verlag, Berlin-Heidelberg-New York (1970).
  • Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press (1970).
  • Väisälä, J., On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. A. I. 322 (1962), 1–12.
  • Vituškin, A. G., Analytic capacity of sets in problems of approximation theory. Uspehi Mat. Nauk. 22 no. 6 (1967), 141–199(Russian Math. Surveys 22 (1967), 139–200.)
  • Yamamoto, H., On KD-null sets in N-dimensional Fuclidean space, J. Sci Hiroshima Univ. Ser. A-I 34 (1970), 59–68.
  • Ziemer, W. P., Extremal length and conformal capacity. Trans. Amer. Math. Soc. 126 (1967), 460–473.
  • ——→-, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.