Arkiv för Matematik

  • Ark. Mat.
  • Volume 12, Number 1-2 (1974), 85-130.

Parametrices for pseudodifferential operators with multiple characteristics

Johannes Sjöstrand

Full-text: Open access

Article information

Source
Ark. Mat., Volume 12, Number 1-2 (1974), 85-130.

Dates
Received: 4 May 1973
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896194

Digital Object Identifier
doi:10.1007/BF02384749

Mathematical Reviews number (MathSciNet)
MR352749

Zentralblatt MATH identifier
0317.35076

Rights
1974 © Institut Mittag-Leffler

Citation

Sjöstrand, Johannes. Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12 (1974), no. 1-2, 85--130. doi:10.1007/BF02384749. https://projecteuclid.org/euclid.afm/1485896194


Export citation

References

  • Boutet de Monvel, L. & Trèves, F., On a class of pseudodifferential operators with double characteristics. Preprint, Rutgers University.
  • Cardoso, F. & Trèves, F., Necessary conditions of local solvability for differential equations with double characteristics. Preprint, Princetons and Rutgers University.
  • Duistermaat, J. J. & Hörmander, L., Fourier integral operators II. Acta Math. 128 (1972), 183–269.
  • Duistermaat, J. J. & Sjöstrand, J., A global construction for pseudodifferential operators with non-involutive characteristics. Invent. Math.. Vol. 20Fasc. 3 (1973), 209–225.
  • Gilioli, A. & Trèves, F.An example in the local solvability theory of linear PDE’s. Preprint, Rutgers University.
  • Grušin, V. V., Pseudodifferentia operators on Rn with bounded symbols. Funkcional Anal. i Priložen. 4 (1970) no 4, 37–50. Functional Anal. Appl. 4 (1970), 202–212.
  • — On the proof of the discreteness of the spectrum of one class of differential operators in Rn. Funkcional Anal. i. Priložen. 5 (1971) no 1, 71–72. Functional Anal. Appl. 5 (1971), 58–59.
  • —, On a class of hypoelliptic operators. Mat. Sb. 83 (125) (1970) no 3, 456–473. Math. USSR-Sb. 12 (1970) no 3, 458–476.
  • — On a class of elliptic operators, degenerate on a submanifold., Mat. Sb. 84 (126) (1971) no 2, 163–195. Math. USSR-Sb 13 (1971) no 2, 155–185.
  • — Differential equations and pseudodifferential operators with operator valued symbols. Mat. Sb. 88 (130) (1972), 504–521.
  • Hörmander, L., Fourier integral operators I. Acta Math. 127 (1971), 79–183.
  • — Pseudodifferential operators and hypoelliptic equations. Amer. Math. Soc. Symp. Pure Math. 10 (1966), Singular integrals, 138–183.
  • — On the existence and the regularity of solutions of linear pseudodifferential equations. Enseignement Math., t. XVII, fasc 2, (1971), 99–163.
  • Hörmander, L.Linear partial differential operators. Grundlehren d. Math. Wiss. 116. Springer-Verlag, 1963.
  • Melin, A., Lower bounds for pseudodifferential operators. Ark. Mat. 9 (1971), 117–140.
  • Mizohata, S. & Ohya, Y., Sur la condition de E. E. Levi concernant des équations hyperboliques. Publ. Res. Inst. Math. Sci. A, 4 (1968), 511–526.
  • Moyer, R. D., On the Nirenberg-Treves condition for local solvability. Unpublished manuscript, University of Kansas.
  • Nirenberg, L. & Trèves, F., On local solvability of linear partial differential equations, Part I and II. Comm. Pure Appl. math. 23 (1970), 1–38 and 459–510.
  • Radkevič, E. v., A priori estimates and hypoelliptic operators with multiple charateristics. Dokl. Akad. Nauk SSSR 187 (1969) no 2, 274–277.; Soviet Math. Dokl. 10 (1969) no 4, 849–853.
  • — Hypoelliptic operators with multiple characteristics. Mat. Sb. 79 (121) (1969), 193–216, Math. USSR-Sb. 8 (1969), 181–206.
  • Sjöstrand, J., Operators of principal type with interior boundary conditions. Acta Math. 130 (1973), 1–51.
  • — Une classe d’opérateurs pseudodifférentiels à caractéristiques multiples. C. R. Acad. Sci. Paris, 275 (1972), Sér. A. 817–819.
  • — Une classe d’opérateurs pseudodifférentiels à caractéristiques doubles. C. R. Acad. Sci. Paris, 275 (1973), Sér. A. 743–745.
  • Trèves, F., A new method of proof of the subelliptic estimates. Comm. Pure Appl. Math. 24 (1971), 71–115.
  • Višik, M. I. & Grušin, V. V., Elliptic pseudodifferential operators on a closed manifold which degenerate on a submanifold. Dokl. Akad. Nauk SSSR 189 (1969) no 1, 16–19. Soviet Math. Dokl. 10 (1969) no 6, 1316–1319.
  • —— On a class of higher order degenerate elliptic equations. Mat. Sb. 79 (121) (1969) no 1, 3–36. Math. USSR-Sb. 8 (1969) no 1, 1–32.