Arkiv för Matematik

  • Ark. Mat.
  • Volume 54, Number 2 (2016), 403-435.

The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures

Alexander I. Bufetov and Yanqi Qiu

Full-text: Open access

Abstract

The main result of this paper, Theorem 1.5, gives explicit formulae for the kernels of the ergodic decomposition measures for infinite Pickrell measures on the space of infinite complex matrices. The kernels are obtained as the scaling limits of Christoffel-Uvarov deformations of Jacobi orthogonal polynomial ensembles.

Article information

Source
Ark. Mat., Volume 54, Number 2 (2016), 403-435.

Dates
Received: 22 January 2015
Revised: 8 September 2015
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485802746

Digital Object Identifier
doi:10.1007/s11512-016-0230-x

Mathematical Reviews number (MathSciNet)
MR3546359

Zentralblatt MATH identifier
1365.37005

Rights
2016 © Institut Mittag-Leffler

Citation

Bufetov, Alexander I.; Qiu, Yanqi. The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures. Ark. Mat. 54 (2016), no. 2, 403--435. doi:10.1007/s11512-016-0230-x. https://projecteuclid.org/euclid.afm/1485802746


Export citation

References

  • Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents.
  • Baik, J., Deift, P. and Strahov, E., Products and ratios of characteristic polynomials of random Hermitian matrices, J. Math. Phys. 44 (2003), 3657–3670.
  • Borodin, A. and Olshanski, G., Infinite random matrices and ergodic measures, Comm. Math. Phys. 223 (2001), 87–123.
  • Bufetov, A. I., Multiplicative functionals of determinantal processes, Uspekhi Mat. Nauk 67 (2012), 177–178; translation in: Russian Math. Surveys 67 (2012), 181–182.
  • Bufetov, A., Infinite determinantal measures, Electron. Res. Announc. Math. Sci. 20 (2013), 8–20.
  • Bufetov, A. I., Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures (2013).
  • Bufetov, A. I., Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures, Izv. Math. 79 (2015).
  • Bufetov, A. I. and Qiu, Y., The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures (2014).
  • Keng, H. L., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking, 1958. Russian translation: Moscow Izd. Inostr. Lit., 1959, English translation (from the Russian): AMS, Providence, 1963.
  • Neretin, Yu. A., Hua-type integrals over unitary groups and over projective limits of unitary groups, Duke Math. J. 114 (2002), 239–266.
  • Olshanski, G. and Vershik, A., Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, in Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2 175, pp. 137–175, Amer. Math. Soc., Providence, RI, 1996.
  • Pickrell, D., Separable representations for automorphism groups of infinite symmetric spaces, J. Funct. Anal. 90 (1990), 1–26.
  • Shirai, T. and Takahashi, Y., Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), 414–463.
  • Shirai, T. and Takahashi, Y., Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties, Ann. Probab. 31 (2003), 1533–1564.
  • Soshnikov, A., Determinantal random point fields, Uspekhi Mat. Nauk 55 (2000), 107–160 (Russian); translation in: Russian Math. Surveys 55 (2000), no. 5, 923–975.
  • Szegő, G., Orthogonal Polynomials, 4th ed., American Mathematical Society, Colloquium Publications XXIII, American Mathematical Society, Providence, RI, 1975.
  • Tracy, C. A. and Widom, H., Level spacing distributions and the Bessel kernel, Comm. Math. Phys. 161 (1994), 289–309.
  • Vershik, A. M., A description of invariant measures for actions of certain infinite-dimensional groups, Dokl. Akad. Nauk SSSR 218 (1974), 749–752 (Russian).