Arkiv för Matematik

  • Ark. Mat.
  • Volume 52, Number 2 (2014), 329-354.

Global integral gradient bounds for quasilinear equations below or near the natural exponent

Nguyen Cong Phuc

Full-text: Open access

Abstract

We obtain sharp integral potential bounds for gradients of solutions to a wide class of quasilinear elliptic equations with measure data. Our estimates are global over bounded domains that satisfy a mild exterior capacitary density condition. They are obtained in Lorentz spaces whose degrees of integrability lie below or near the natural exponent of the operator involved. As a consequence, nonlinear Calderón–Zygmund type estimates below the natural exponent are also obtained for $\mathcal{A}$-superharmonic functions in the whole space ℝn. This answers a question raised in our earlier work (On Calderón–Zygmund theory for p- and $\mathcal{A}$-superharmonic functions, to appear in Calc. Var. Partial Differential Equations, DOI 10.1007/s00526-011-0478-8) and thus greatly improves the result there.

Note

Supported in part by NSF grant DMS-0901083.

Article information

Source
Ark. Mat., Volume 52, Number 2 (2014), 329-354.

Dates
Received: 28 June 2012
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485802674

Digital Object Identifier
doi:10.1007/s11512-012-0177-5

Mathematical Reviews number (MathSciNet)
MR3255143

Zentralblatt MATH identifier
1327.35384

Rights
2013 © Institut Mittag-Leffler

Citation

Phuc, Nguyen Cong. Global integral gradient bounds for quasilinear equations below or near the natural exponent. Ark. Mat. 52 (2014), no. 2, 329--354. doi:10.1007/s11512-012-0177-5. https://projecteuclid.org/euclid.afm/1485802674


Export citation

References

  • Alvino, A., Ferone, V. and Trombetti, G., Estimates for the gradient of solutions of nonlinear elliptic equations with L1-data, Ann. Mat. Pura Appl. 178 (2000), 129–142.
  • Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J. L., An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (1995), 241–273.
  • Boccardo, L. and Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149–169.
  • Boccardo, L. and Gallouët, T., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), 641–655.
  • Byun, S. and Wang, L., Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math. 57 (2004), 1283–1310.
  • Caffarelli, L. and Peral, I., On W1, p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), 1–21.
  • Dal Maso, G., Murat, F., Orsina, A. and Prignet, A., Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. 28 (1999), 741–808.
  • Dall’Aglio, A., Approximated solutions of equations with L1 data. Applications to the H-convergence of quasilinear parabolic equations, Ann. Mat. Pura Appl. 170 (1996), 207–240.
  • Del Vecchio, T., Nonlinear elliptic equations with measure data, Potential Anal. 4 (1995), 185–203.
  • Duzaar, F. and Mingione, G., Gradient estimates via linear nonlinear potentials, J. Funct. Anal. 259 (2010), 2961–2998.
  • Duzaar, F. and Mingione, G., Gradient estimates via non-linear potentials, Amer. J. Math. 133 (2011), 1093–1149.
  • Giusti, E., Direct Methods in the Calculus of Variations, World Scientific, River Edge, NJ, 2003.
  • Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.
  • Iwaniec, T., Projections onto gradient fields and Lp-estimates for degenerated elliptic operators, Studia Math. 75 (1983), 293–312.
  • Jerison, D. and Kenig, C., The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), 161–219.
  • Kilpeläinen, T. and Li, G., Estimates for p-Poisson equations, Differential Integral Equations 13 (2000), 791–800.
  • Kilpeläinen, T. and Malý, J., Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (1992), 591–613.
  • Kilpeläinen, T. and Malý, J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161.
  • Lewis, J. L., Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177–196.
  • Mengesha, T. and Phuc, N. C., Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations 250 (2011), 2485–2507.
  • Meyers, N. G., An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (1963), 189–206.
  • Mikkonen, P., On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996), 71.
  • Mingione, G., The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007), 195–261.
  • Mingione, G., Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571–627.
  • Mingione, G., Nonlinear measure data problems, Milan J. Math. 79 (2011), 429–496.
  • Muckenhoupt, B. and Wheeden, R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.
  • Phuc, N. C., On Calderón–Zygmund theory for p- and $\mathcal{A}$-superharmonic functions, Calc. Var. Partial Differential Equations 46 (2013), 165–181.
  • Phuc, N. C. and Torres, M., Characterizations of the existence and removable singularities of divergence measure vector fields, Indiana Univ. Math. J. 57 (2008), 1573–1597.
  • Phuc, N. C. and Verbitsky, I. E., Quasilinear and Hessian equations of Lane–Emden type, Ann. of Math. 168 (2008), 859–914.
  • Trudinger, N. S. and Wang, X.-J., On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 369–410.
  • Wang, L., A geometric approach to the Calderón–Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2003), 381–396.
  • Ziemer, W. P., Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989.