Annals of Functional Analysis

Advances in Operator Cauchy--Schwarz inequalities and their reverses

J. M. Aldaz, S. Barza, M. Fujii, and M. S. Moslehian

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Cauchy-Schwarz (C-S) inequality is one of the most famous inequalities in mathematics. In this survey article, we first give a brief history of the inequality. Afterward, we present the C-S inequality for inner product spaces. Focusing on operator inequalities, we then review some significant recent developments of the C-S inequality and its reverses for Hilbert space operators and elements of Hilbert $C^*$-modules. In particular, we pay special attention to an operator Wielandt inequality.

Article information

Source
Ann. Funct. Anal., Volume 6, Number 3 (2015), 275-295.

Dates
First available in Project Euclid: 17 April 2015

Permanent link to this document
https://projecteuclid.org/euclid.afa/1429286046

Digital Object Identifier
doi:10.15352/afa/06-3-20

Mathematical Reviews number (MathSciNet)
MR3336919

Zentralblatt MATH identifier
1312.47022

Subjects
Primary: 47A63: Operator inequalities
Secondary: 46L05: General theory of $C^*$-algebras 47A30: Norms (inequalities, more than one norm, etc.) 26D15: Inequalities for sums, series and integrals

Keywords
History of mathematics Operator inequality operator geometric mean Cauchy--Schwarz inequality

Citation

Aldaz, J. M.; Barza, S.; Fujii, M.; Moslehian, M. S. Advances in Operator Cauchy--Schwarz inequalities and their reverses. Ann. Funct. Anal. 6 (2015), no. 3, 275--295. doi:10.15352/afa/06-3-20. https://projecteuclid.org/euclid.afa/1429286046


Export citation

References

  • J.M. Aldaz, A stability version of Hölder's inequality, J. Math. Anal. Appl. 343 (2008), no. 2, 842–852.
  • J.M. Aldaz, Strengthened Cauchy-Schwarz and Hölder inequalities, J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 116, 6 pp.
  • H. Alzer, On the Cauchy-Schwarz inequality, J. Math. Anal. Appl. 234 (1999), no. 1, 6–14.
  • T. Ando, Topics on operator inequality, Hokkaido Univ. Lecture Note, 1978.
  • Lj. Arambasić, D. Bakić and M.S. Moslehian, A treatment of the Cauchy–Schwarz inequality in $C^*$-modules, J. Math. Anal. Appl. 381 (2011) 546–556.
  • J.S. Aujla and H.L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), no. 2, 265–272.
  • F.L. Bauer and A.S. Householder, Some inequalities involving the euclidean condition of a matrix, Numer. Math. 2 (1960), 308–311
  • R. Bhatia and C. Davis, A Cauchy-Schwartz inequality for operators with applications Linear Algebra Appl. 223/224 (1995), 119–129.
  • R. Bhatia and C. Davis, More operator versions of the Schwarz inequality, Comm. Math. Phys. 215 (2000), no. 2, 239–244.
  • V. Bouniakowsky, Sur quelques inegalités concernant les intégrales aux différences finies, Mem. Acad. Sci. St. Petersbourg 7 (1859), no. 1, p. 9.
  • M.L. Buzano, Generalizzatione della diseguagliazza di Cauchy?Schwarz, Rend. Sem. Mat. Univ. Politech. Torino 31 (1971/73) 405-?409.
  • A. Cauchy, Oeuvres 2, III (1821), p. 373.
  • P. Cerone, Y.J. Cho, S.S. Dragomir and S.S. Kim, Refinements of some reverses of Schwarz's inequality in $2$-inner product spaces and applications for integrals, J. Indones. Math. Soc. 12 (2006), no. 2, 185–199.
  • M.-D. Choi, A Schwartz inequality for positive linear maps on $C^*$-algebras, Illinois J. Math. 18 (1974), 565–574.
  • J.B. Diaz and F.T. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G. Szegö and L.V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963), 415–418.
  • S.S. Dragomir, A survey on Cauchy–Bunyakovsky–Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 63, 142 pp.
  • S.S. Dragomir, Advances in inequalities of the Schwarz, triangle and Heisenberg type in inner product spaces, Nova Science Publishers, Inc., New York, 2007.
  • N. Elezović, Lj. Marangunić and J.E. Pečarić, Unified treatment of complemented Schwarz and Grüss inequalities in inner product spaces, Math. Inequal. Appl. 8 (2005), no.2, 223–231.
  • J.I. Fujii, Operator-valued inner product and operator inequalities, Banach J. Math. Anal. 2 (2008), no. 2, 59–67.
  • J.I. Fujii, M. Fujii, M.S. Moslehian and Y. Seo, Cauchy-Schwarz inequality in semi-inner product $C^*$-modules via polar decomposition, J. Math. Anal. Appl. 394 (2012), no. 2, 835–840.
  • M. Fujii, Y. Katayama and R. Nakamoto, Generalizations of the Wielandt theorem, Math. Japon. 49 (1999) 217-222.
  • M. Fujii, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy–Schwarz and Holder-McCarthy inequalities, Nihonkai Math. J. 8 (1997) 117–122.
  • M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Inequalities for bounded selfadjoint operators on a Hilbert space, II, Element, Zagreb, 2012.
  • M. Fujii and Y. Seo, Wielandt type extensions of the Heinz-Kato-Furuta inequality, Operator Theory: Adv. Appl. 127 (2001), 267–277.
  • T. Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), 785–787.
  • T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond–Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
  • R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
  • D. Ilišević and S. Varošanec, On the Cauchy–Schwarz inequality and its reverse in semi-inner product $C^*$-modules, Banach J. Math. Anal. 1 (2007), 78–84.
  • D.R. Jocić, Cauchy–Schwarz and means inequalities for elementary operators into norm ideals, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2705–2711.
  • M. Joiţa, On the Cauchy–Schwarz inequality in $C^*$-algebras, Math. Rep. (Bucur.) 3(53) (2001), no. 3, 243–246.
  • R.V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2) 56 (1952), 494–503.
  • F. Kittaneh, Some norm inequalities for operators, Canad. Math. Bull. 42 (1999), no. 1, 87–96.
  • M.S. Klamkin and R.G. Mclenaghan, An ellipse inequality, Math. Mag. 50 (1977), 261–263.
  • E.C. Lance, Hilbert $C^{*}$-modules, A Toolkit for Operator Algebraists, London Math. Soc. Lecture Series, 210. Cambridge University Press, Cambridge, 1995.
  • E.-Y. Lee, A matrix reverse Cauchy–Schwarz inequality, Linear Algebra Appl. 430 (2009), no. 2-3, 805–810.
  • J. Ma, An identity in real inner product space, J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Art. 48, 4 pp.
  • R. Mathias, A note on: "More operator versions of the Schwarz inequality" [Comm. Math. Phys. 215 (2000), no. 2, 239-244; by R. Bhatia and C. Davis], Positivity 8 (2004), no. 1, 85–87.
  • M.S. Moslehian, R. Nakamoto and Y. Seo, A Diaz–Metcalf type inequality for positive linear maps and its applications, Electron. J. Linear Algebra 22 (2011), 179–190.
  • M.S. Moslehian and L.-E. Persson, Reverse Cauchy–Schwarz inequalities for positive $C^*$-valued sesquilinear forms, Math. Inequal. Appl. 12 (2009), no. 4, 701–709.
  • R.B. Nelsen, Proof without Words: The Cauchy-Schwarz Inequality, Math. Mag. 67 (1994), no. 1, 20.
  • C.P. Niculescu, Converses of the Cauchy–Schwarz inequality in the $C^*$-framework, An. Univ. Craiova Ser. Mat. Inform. 26 (1999), 22–28.
  • G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. 1, Berlin 1925, pp. 57 and 213–214.
  • O. Shisha and B. Mond, Bounds on differences of means, Inequalities I, New York-London, 1967, 293–308.
  • J.M. Steele, The Cauchy–Schwarz master class. An introduction to the art of mathematical inequalities, MAA Problem Books Series. Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 2004.
  • W.F. Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Sci. 6 (1955), 211–216.
  • S.S. Wagner, Notices Amer. Math. Soc. 12 (1965), 220.
  • G.S. Watson, Serial correlation in regression analysis I, Biometrika 42 (1955), 327–342.
  • D.B. Zagier, An inequality converse to that of Cauchy, Indag. Math. (N.S.) 39 (1977), no. 4, 349–351.