Annals of Functional Analysis

$dist$-formulas and Toeplitz operators

Mübariz T. Garayev, Mehmet Gürdal, Suna Saltan, and Ulaş Yamanci

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The distance from the nonconstant function $\varphi$ in $L^{\infty}% (\mathbb{T})$ to the set $\mathcal{F}_{\text{const}}$ of all constant functions is estimated in terms of Hankel operators on the Hardy space $H^{2}(\mathbb{D})$ over the unit disk $\mathbb{D}=\left\{ z\in \mathbb{C}:\left\vert z\right\vert \in [0, 1)\right\} $. We give a sufficient condition ensuring the equality $dist(\varphi,\mathcal{F}_{\text{const}})=\left\Vert \varphi\right\Vert_{L^{\infty}}$. Some other $dist$-formulas are also discussed.

Article information

Source
Ann. Funct. Anal., Volume 6, Number 1 (2015), 221-226.

Dates
First available in Project Euclid: 19 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1419001461

Digital Object Identifier
doi:10.15352/afa/06-1-16

Mathematical Reviews number (MathSciNet)
MR3297798

Zentralblatt MATH identifier
1357.47036

Subjects
Primary: 47B35
Secondary: 47B10: Operators belonging to operator ideals (nuclear, p-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20]

Keywords
Hardy space Hankel operator Toeplitz operator Maximal numerical range $dist$-formula

Citation

Gürdal, Mehmet; Garayev, Mübariz T.; Saltan, Suna; Yamanci, Ulaş. $dist$-formulas and Toeplitz operators. Ann. Funct. Anal. 6 (2015), no. 1, 221--226. doi:10.15352/afa/06-1-16. https://projecteuclid.org/euclid.afa/1419001461


Export citation

References

  • K. Davidson, The distance to the analytic Toeplitz operators, Illinois. J. Math. 31 (1987), 265–273.
  • R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
  • K. Hoffman, Banach spaces of analytic functions, Prentice Hall, England.Cliffs, NJ, 1962.
  • R.V. Kadison, Derivations of operator algebras, Ann. of Math. (2) 83 (1966), 280–293.
  • G.S. Mustafaev, Distance estimation in the space of Toeplitz operators, Izv. Akad. Nauk Azerbaidzhan, SSR. Ser. Fiz.-Tekhn.Mat. Nauk 6 (1985), 10–14.
  • G.S. Mustafaev and V.S. Shulman, Estimates for the norms of inner derivations in some operator algebras, Math. Notes 45 (1989), 337–341.
  • N.K. Nikolski, Treatise on the shift operator, Heidelberg, 1986.
  • S. Sakai, Derivations of $W^*$-algebras, Ann. of Math. 83 (1966), 273–279.
  • S. Sakai, Derivations of simple $C^*$-algebras, J. Funct. Anal. 2 (1968), 202–206.
  • J.G. Stampfli, The norm of a derivation, Pacif. J. Math. 33 (1970), 737–747.
  • B.Sz.-Nagy and C.Foias, Harmonic analysis of operators on Hilbert space, North Holland, New York, 1970.