Abstract
We consider the Cauchy problem for the fractional nonlinear Schrödinger equation \[ \left\{ \begin{array} [c]{c}% i\partial_{t}u+\frac{1}{\alpha} \left| \partial_{x} \right| ^{\alpha }u=\lambda\left| u \right| ^{2}u,\text{ }t>0, \quad x\in\mathbb{R}% \mathbf{,}\\ u \left( 0,x \right) =u_{0} \left( x \right) , \quad x\in\mathbb{R}% \mathbf{,}% \end{array} \right. \] where $\lambda\in\mathbb{R},$ the order of the fractional derivative $\alpha\in\left( 1,\frac{3}{2} \right) .$ We obtain the large time asymptotic behavior of solutions which has a logarithmic phase modifications for a large time comparing with the linear problem.
Citation
Nakao Hayashi. Pavel I. Naumkin. "Large time asymptotics for the fractional nonlinear Schrödinger equation." Adv. Differential Equations 25 (1/2) 31 - 80, January/February 2020. https://doi.org/10.57262/ade/1580958058
Information