Advances in Differential Equations

Asymptotic behavior of solutions of a semilinear heat equation with localized reaction

Ryuichi Suzuki

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider non-negative solutions to the Dirichlet problem of a semilinear heat equation with localized reaction in $\Omega$: $u_t = \Delta u +f(u(x_0(t),t))$, where $\Omega$ is a smooth bounded domain, $x_0(t)$ is a locally Hölder continuous function from $[0,\infty)$ into $\Omega$ and $f$ satisfies $f(0)=f'(0)=0$ and some blow-up condition. We show that, if $x_0(t)$ remains in some compact subset of $\Omega$ as $t\to\infty$, then all global solutions are bounded in $\Omega\times(0,\infty)$ and, if $x_0(t)$ approaches the boundary of $\Omega$ as $t\to \infty$, then some unbounded global solution (infinite time blow-up solution) exists. These results are parts of our main results on the classification of all solutions.

Article information

Source
Adv. Differential Equations Volume 15, Number 3/4 (2010), 283-314.

Dates
First available in Project Euclid: 18 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.ade/1355854751

Mathematical Reviews number (MathSciNet)
MR2588771

Zentralblatt MATH identifier
1198.35128

Subjects
Primary: 35B35: Stability 35B40: Asymptotic behavior of solutions 35B45: A priori estimates 35K20: Initial-boundary value problems for second-order parabolic equations 35K55: Nonlinear parabolic equations 35K57: Reaction-diffusion equations

Citation

Suzuki, Ryuichi. Asymptotic behavior of solutions of a semilinear heat equation with localized reaction. Adv. Differential Equations 15 (2010), no. 3/4, 283--314. https://projecteuclid.org/euclid.ade/1355854751.


Export citation