Acta Mathematica

Geodesics in large planar maps and in the Brownian map

Jean-François Gall

Full-text: Open access

Abstract

We study geodesics in the random metric space called the Brownian map, which appears as the scaling limit of large planar maps. In particular, we completely describe geodesics starting from the distinguished point called the root, and we characterize the set S of all points that are connected to the root by more than one geodesic. The set S is dense in the Brownian map and homeomorphic to a non-compact real tree. Furthermore, for every x in S, the number of distinct geodesics from x to the root is equal to the number of connected components of S\{x}. In particular, points of the Brownian map can be connected to the root by at most three distinct geodesics. Our results have applications to the behavior of geodesics in large planar maps.

Article information

Source
Acta Math., Volume 205, Number 2 (2010), 287-360.

Dates
Received: 2 June 2008
Revised: 26 June 2009
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485892502

Digital Object Identifier
doi:10.1007/s11511-010-0056-5

Mathematical Reviews number (MathSciNet)
MR2746349

Zentralblatt MATH identifier
1214.53036

Rights
2010 © Institut Mittag-Leffler

Citation

Gall, Jean-François. Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2010), no. 2, 287--360. doi:10.1007/s11511-010-0056-5. https://projecteuclid.org/euclid.acta/1485892502


Export citation

References

  • A ldous, D., The continuum random tree. I. Ann. Probab., 19 (1991), 1–28.
  • — The continuum random tree. III. Ann. Probab., 21 (1993), 248–289.
  • A mbjørn, J., D urhuus, B. & J onsson, T., Quantum Geometry. A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1997.
  • A ngel, O., Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal., 13 (2003), 935–974.
  • A ngel, O. & S chramm, O., Uniform infinite planar triangulations. Comm. Math. Phys., 241 (2003), 191–213.
  • B outtier, J., Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires. Ph.D. Thesis, Université Paris 6, Paris, 2005.
  • B outtier, J., D i F rancesco, P. & G uitter, E., Planar maps as labeled mobiles. Electron. J. Combin., 11 (2004), Research Paper 69, 27 pp.
  • B outtier, J. & G uitter, E., Statistics in geodesics in large quadrangulations. J. Phys. A, 41 (2008), 145001, 30 pp.
  • — Confluence of geodesic paths and separating loops in large planar quadrangulations. J. Stat. Mech. Theory Exp., 3 (2009), P03001, 44 pp.
  • B rézin, E., I tzykson, C., P arisi, G. & Z uber, J. B., Planar diagrams. Comm. Math. Phys., 59 (1978), 35–51.
  • B urago, D., B urago, Y. & I vanov, S., A Course in Metric Geometry. Graduate Studies in Mathematics, 33. Amer. Math. Soc., Providence, RI, 2001.
  • C hassaing, P. & D urhuus, B., Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab., 34 (2006), 879–917.
  • C hassaing, P. & S chaeffer, G., Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields, 128 (2004), 161–212.
  • C ori, R. & V auquelin, B., Planar maps are well labeled trees. Canad. J. Math., 33 (1981), 1023–1042.
  • D uquesne, T. & L e G all, J.-F., Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields, 131 (2005), 553–603.
  • G allot, S., H ulin, D. & L afontaine, J., Riemannian Geometry. Universitext. Springer, Berlin–Heidelberg, 1987.
  • G ittenberger, B., A note on: “State spaces of the snake and its tour—convergence of the discrete snake” [J. Theoret. Probab., 16 (2003), 1015–1046]. J. Theoret. Probab., 16 (2003), 1063–1067.
  • G romov, M., Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, 152. Birkhäuser, Boston, MA, 1999.
  • H ebda, J. J., Metric structure of cut loci in surfaces and Ambrose’s problem. J. Differential Geom., 40 (1994), 621–642.
  • t H ooft, G., A planar diagram theory for strong interactions. Nucl. Phys. B, 72 (1974), 461–473.
  • I toh, J.-I., The length of a cut locus on a surface and Ambrose’s problem. J. Differential Geom., 43 (1996), 642–651.
  • L ando, S. K. & Z vonkin, A. K., Graphs on Surfaces and their Applications. Encyclopaedia of Mathematical Sciences, 141. Springer, Berlin–Heidelberg, 2004.
  • L e G all, J.-F., Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1999.
  • — The topological structure of scaling limits of large planar maps. Invent. Math., 169 (2007), 621–670.
  • L e G all, J.-F. & P aulin, F., Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal., 18 (2008), 893–918.
  • L e G all, J.-F. & W eill, M., Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist., 42 (2006), 455–489.
  • M arckert, J.-F. & M iermont, G., Invariance principles for random bipartite planar maps. Ann. Probab., 35 (2007), 1642–1705.
  • M arckert, J.-F. & M okkadem, A., States spaces of the snake and its tour—convergence of the discrete snake. J. Theoret. Probab., 16 (2003), 1015–1046.
  • — Limit of normalized quadrangulations: the Brownian map. Ann. Probab., 34 (2006), 2144–2202.
  • M iermont, G., An invariance principle for random planar maps, in Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math. Theor. Comput. Sci. Proc., AG, pp. 39–57. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006.
  • — Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér., 42 (2009), 725–781.
  • M iermont, G. & W eill, M., Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab., 13 (2008), 79–106.
  • M yers, S. B., Connections between differential geometry and topology. I. Simply connected surfaces. Duke Math. J., 1 (1935), 376–391.
  • P oincaré, H., Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc., 6 (1905), 237–274.
  • R evuz, D. & Y or, M., Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften, 293. Springer, Berlin–Heidelberg, 1991.
  • S chaeffer, G., Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. Thesis, Université Bordeaux I, Bordeaux, 1998.
  • S chramm, O., Conformally invariant scaling limits: an overview and a collection of problems, in International Congress of Mathematicians (Madrid, 2006). Vol. I, pp. 513–543. Eur. Math. Soc., Zürich, 2007.
  • S hiohama, K. & T anaka, M., Cut loci and distance spheres on Alexandrov surfaces, in Actes de la table ronde de géométrie différentielle (Luminy, 1992), Sémin. Congr., 1, pp. 531–559. Soc. Math. France, Paris, 1996.
  • T utte, W. T., A census of planar maps. Canad. J. Math., 15 (1963), 249–271.
  • W eill, M., Asymptotics for rooted bipartite planar maps and scaling limits of two-type spatial trees. Electron. J. Probab., 12 (2007), 887–925.
  • Z amfirescu, T., Many endpoints and few interior points of geodesics. Invent. Math., 69 (1982), 253–257.