Acta Mathematica

A parametrized index theorem for the algebraic K-theory Euler class

W. Dwyer, M. Weiss, and B. Williams

Full-text: Open access

Note

Research partially supported by NSF.

Article information

Source
Acta Math. Volume 190, Number 1 (2003), 1-104.

Dates
Received: 26 November 1998
Revised: 21 January 2001
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891548

Digital Object Identifier
doi:10.1007/BF02393236

Zentralblatt MATH identifier
1077.19002

Rights
2003 © Institut Mittag-Leffler

Citation

Dwyer, W.; Weiss, M.; Williams, B. A parametrized index theorem for the algebraic K -theory Euler class. Acta Math. 190 (2003), no. 1, 1--104. doi:10.1007/BF02393236. https://projecteuclid.org/euclid.acta/1485891548


Export citation

References

  • Adams, J. F., Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1974.
  • —, Infinite Loop Spaces. Ann. of Math. Stud., 90. Princeton Univ. Press. Princeton, NJ, 1978.
  • Anderson, D. R., Connolly, F. X., Ferry, S. C. & Pedersen, E. K., Algebraic K-theory with continuous control at infinity. J. Pure Appl. Algebra, 94 (1994), 25–47.
  • Bass, H., Algebraic K-Theory. Benjamin, New York-Amsterdam, 1968.
  • Baum, P. & Douglas, R., K homology and index theory, in Operator Algebras and Applications, Part I (Kingston, ON, 1980), pp. 117–173. Proc. Sympos. Pure Math., 38. Amer. Math. Soc., Providence, RI, 1982.
  • —, Index theory, bordism, and K-homology, in Operator Algebras and K-theory (San Francisco, CA, 1981), pp. 1–31. Contemp. Math., 10. Amer. Math. Soc., Providence, RI, 1982.
  • Becker, J. C., Extensions of cohomology theories. Illinois J. Math., 14 (1970), 551–584.
  • Becker, J. C. & Gottlieb, D. H., The transfer map and fiber bundles. Topology, 14 (1975), 1–12.
  • —, Transfer maps for fibrations and duality. Compositio Math., 33 (1976), 107–133.
  • Becker, J. & Schultz, R., The real semicharacteristic of a fibered manifold. Quart. J. Math. Oxford Ser., (2), 33 (1982), 385–403.
  • Bousfield, A. K. & Kan, D. M., Homotopy Limits, Completions and Localizations. Lecture Notes in Math., 304. Springer-Verlag, Berlin-New York, 1972.
  • Bismut, J.-M. & Lott, J., Flat vector bundles, direct images and higher real analytic torsion. J. Amer. Math. Soc., 8 (1995), 291–363.
  • Bödigheimer, C.-F., Stable splittings of mapping spaces, in Algebraic Topology (Seattle, WA, 1985), pp. 174–187. Lecture Notes in Math., 1286. Springer-Verlag, Berlin, 1987.
  • Brown, M., A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc., 66 (1960), 74–76.
  • Burghelea, D. & Lashof, R., The homotopy type of diffeomorphisms, I; II. Trans. Amer. Math. Soc., 196 (1974), 1–36; 37–50.
  • —, Geometric transfer and the homotopy type of the automorphism groups of a manifold. Trans. Amer. Math. Soc., 269 (1982), 1–38.
  • Burghelea, D., Lashof, R. & Rothenberg, M., Groups of Automorphisms of Manifolds. Lecture Notes in Math. 473. Springer-Verlag, Berlin-New York, 1975.
  • Casson, A. & Gottlieb, D. H., Fibrations with compact fibres. Amer. J. Math., 99 (1977), 159–189.
  • Cerf, J., La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Inst. Hautes Études Sci. Publ. Math., 39 (1970), 5–173.
  • Chapman, T., Lectures on Hilbert Cube Manifolds. CBMS Regional Conf. Ser. in Math., 28. Amer. Math. Soc., Providence, RI, 1976.
  • Chapman, T. A., Piecewise linear fibrations. Pacific J. Math., 128 (1987), 223–250.
  • Cheeger, J., Analytic torsion and the heat equation. Ann. of Math., (2) 109 (1979), 259–322.
  • Clapp, M., Duality and transfer for parametrized spectra. Arch. Math. (Basel), 37 (1981), 462–472.
  • Carlsson, G. & Pedersen, E. K., Controlled algebra and the Novikov conjectures for K- and L-theory. Topology, 34 (1995), 731–758.
  • Carlsson, G., Pedersen, E. K. & Vogell, W., Continuously controlled algebraic K-theory of spaces and the Novikov conjecture. Math. Ann., 310 (1998), 169–182.
  • Dold, A., Lectures on Algebraic Topology. Grundlehren Math. Wiss., 200. Springer-Verlag, New York-Berlin, 1972.
  • —, The fixed point transfer of fibre-preserving maps. Math. Z., 148 (1976), 215–244.
  • Dold, A. & Puppe, D., Duality, trace and transfer, in Geometric Topology (Warsaw, 1978), pp. 81–102. PWN, Warsaw, 1980.
  • Dundas, B. I., Relative K-theory and topological cyclic homology. Acta Math., 179 (1997), 223–242.
  • Dundas, B. I. & McCarthy, R., Stable K-theory and topological Hochschild homology. Ann. of Math. (2), 140 (1994), 685–701; Erratum. Ibid., 142 (1995), 425–426.
  • Dwyer, W., The centralizer decomposition of BG, in Algebraic Topology: New Trends in Localization and Periodicity (Sant Feliu de Guíxols, 1994), pp. 167–184. Progr. Math., 136. Birkhäuser, Basel, 1996.
  • Fulton, W. & MacPherson, R., Categorical Framework for the Study of Singular Spaces. Mem. Amer. Math. Soc., 31 (243). Amer. Math. Soc., Providence, RI, 1981.
  • Gauld, D., Mersions of topological manifolds. Trans. Amer. Math. Soc., 149 (1970), 539–560.
  • Gillet, H., Riemann-Roch theorems for higher algebraic K-theory. Adv. in Math., 40 (1981), 203–289.
  • Goodwillie T. G., Calculus I: The first derivative of pseudoisotopy theory. K-Theory, 4 (1990), 1–27.
  • —, Calculus II: Analytic functors. K-Theory, 5 (1991/92), 295–332.
  • Goodwillie, T., Klein, J. & Weiss, M., A Haefliger style description of the embedding calculus tower. To appear in Topology.
  • Hatcher, A. & Wagoner, J., Pseudo-Isotopies of Compact Manifolds. Astérisque, 6. Soc. Math. France, Paris, 1973.
  • Hilton, P., Mislin, G. & Roitberg J., Localization of Nilpotent Groups and Spaces. North-Holland Math. Stud. 15. North-Holland, Amsterdam, 1975.
  • Hu, S.-T., Theory of Retracts. Wayne State Univ. Press, Detroit 1965.
  • Igusa, K., What happens to Hatcher and Wagoner's formula for π0C(M) when the first Postnikov invariant of M is nontrivial?, in Algebraic K-Theory, Number Theory Gometry and Analysis (Bielefeld, 1982), pp. 104–172. Lecture Notes in Math., 1046. Springer-Verlag, Berlin, 1984.
  • —, The stability theorem for smooth pseudoisotopies. K-Theory, 2 (1988), 1–355.
  • —, Higher Franz-Reidemeister Torsion. AMS/IP Stud. Adv. Math., 31. Amer. Math. Soc., Providence, RI; International Press, Somerville, MA, 2002.
  • Igusa, K. & Klein, J., The Borel regulator map on pictures, II. An example from Morse theory K-Theory, 7 (1993), 225–267.
  • James, I. M., Fibrewise Topology. Cambridge Tracts in Math., 91. Cambridge Univ. Press, Cambridge, 1989.
  • Kan, D. M., On c.s.s. complexes. Amer. J. Math., 79 (1957), 449–476.
  • Karoubi, M., Homologie cyclique et K-théorie. Astérisque, 149. Soc. Math.. France, Paris, 1987.
  • Kister, J. M., Microbundles are fiber bundles. Ann. of Math. (2) 80 (1964), 190–199.
  • Kirby, R. C. & Siebenmann, L. C., Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Ann. of Math. Stud., 88. Princeton Univ. Press, Princeton, NJ, 1977.
  • Lacher, R. C., Cell-like mappings, I. Pacific J. Math., 30 (1969), 717–731.
  • —, Cell-like mappings, II, Pacific J. Math., 35 (1970), 649–660.
  • —, Cell-like mappings and their generalizations. Bull. Amer. Math. Soc., 83 (1977), 495–552.
  • Lott, J., Diffeomorphisms and Noncommutative Analytic Torsion. Mem. Amer. Math. Soc., 141 (673) Amer. Math. Soc., Providence, RI, 1999.
  • MacLane, S., Categories for the Working Mathematician. Graduate Texts in Math., 5. Springer-Verlag, New York-Berlin, 1971.
  • Mather, J. N., The vanishing of the homology of certain groups of homeomorphisms. Topology, 10 (1971), 297–298.
  • Mazur, B., Differential topology from the point of view of simple homotopy theory. Inst. Hautes Études Sci. Publ. Math., 15 (1963), 1–93.
  • McDuff, D., Configuration spaces of positive and negative particles. Topology, 14 (1975), 91–107.
  • —, The homology of some groups of diffeomorphisms. Comment. Math. Helv., 55 (1980), 97–129.
  • Mishchenko, A. S. & Fomenko, A. T., The index of elliptic operators over C*-algebras. Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 831–859, 967 (Russian).
  • Morlet, C., Lissage des homéomorphismes. C. R. Acad. Sci. Paris Sér. A-B, 268 (1969), A1323-A1326.
  • Müller, W., Analytic torsion and R-torsion for unimodular representations. J. Amer. Math. Soc., 6 (1993), 721–753.
  • Pedersen, E. K. & Weibel, C. A., K-theory homology of spaces, in Algebraic Topology (Arcata, CA, 1986), pp. 346–361. Lecture Notes in Math., 1370. Springer-Verlag, Berlin, 1989.
  • Quillen, D., Higher algebraic K-theory, I, in Algebraic K-theory, I: Higher K-theories (Seattle, WA, 1972), pp. 85–147. Lecture Notes in Math., 341. Springer-Verlag, Berlin, 1973.
  • Quinn, F., Thesis, Princeton University, 1969.
  • —, A geometric formulation of surgery, in Topology of Manifolds (Athens, GA, 1969), pp. 500–511. Markham, Chicago, IL, 1970.
  • Ranicki, A. & Yamasaki, M., Controlled K-theory. Topology Appl., 61 (1995), 1–59.
  • Rosenberg, J., C*-algebras, positive scalar curvature and the Novikov conjecture, II, in Geometric Methods in Operator Algebras (Kyoto, 1983), pp. 341–374. Pitman Res. Notes Math. Ser., 123. Longman Sci. Tech., Harlow, 1986.
  • —, C*-algebras, positive scalar curvature and the Novikov conjecture, III. Topology, 25 (1986), 319–336.
  • —, The KO-assembly map and positive scalar curvature, in Algebraic Topology (Poznan, 1989), pp. 170–182. Lecture Notes in Math., 1474. Springer-Verlag, Berlin, 1991.
  • Rourke, C. P. & Sanderson, B. J., Δ-sets, I. Homotopy theory. Quart. J. Math. Oxford Ser. (2), 22 (1971), 321–338.
  • —, Δ-sets, II. Block bundles and block fibrations. Quart. J. Math. Oxford Ser. (2), 22 (1971), 465–485.
  • Segal, G., Categories and cohomology theories. Topology, 13 (1974), 293–312.
  • —, Classifying spaces related to foliations. Topology, 17 (1978), 367–382.
  • —, The topology of spaces of rational functions. Acta Math., 143 (1979), 39–72.
  • Smale, S., On the structure of manifolds. Amer. J. Math., 84 (1962), 387–399.
  • Steinberger, M., The classification of PL fibrations, Michigan Math. J., 33 (1986), 11–26.
  • Strøm, A., The homotopy category is a homotopy category. Arch. Math. (Basel), 23 (1972), 435–441.
  • Thomason, R. W., Homotopy colimits in the category of small categories. Math. Proc. Cambridge Philos. Soc., 85 (1979), 91–109.
  • Thomason, R. W. & Trobaugh, T. F., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, pp. 247–435. Progr. Math., 88. Birkhäuser Boston, Boston, MA, 1990.
  • Thurston, W., Foliations and groups of diffeomorphisms. Bull. Amer. Math. Soc., 80 (1974), 304–307.
  • Vogell, W., Algebraic K-theory of spaces, with bounded control. Acta Math., 165 (1990), 161–187.
  • Waldhausen, F., Algebraic K-theory of spaces, a manifold approach, in Current Trends in Algebraic Topology, Part 1 (London, ON, 1981), pp. 141–186. CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982.
  • —, Algebraic K-theory of spaces, in Algebraic and Geometric Topology (New Brunswick, NJ, 1983), pp. 318–419. Lecture Notes in Math., 1126. Springer-Verlag, Berlin, 1985.
  • —, Algebraic K-theory of spaces, concordance, and stable homotopy theory, in Algebraic topology and Algebraic K-Theory (Princeton, NJ, 1983), pp. 392–417. Ann. of Math. Stud., 113. Princeton Univ. Press, Princeton, NJ, 1987.
  • —, An outline of how manifolds relate to algebraic K-theory, in Homotopy Theory (Durham, 1985), pp. 239–247. London Math. Soc. Lecture Note Ser., 117. Cambridge Univ. Press, Cambridge, 1987.
  • Wall, C. T. C., Finiteness conditions for CW-complexes. Ann. of Math., (2), 81 (1965), 56–69.
  • Weiss, M., Excision and restriction in controlled K-theory. Forum Math., 14 (2002), 85–119.
  • Williams, B., Bivariant Riemann-Roch theorems in Geometry and Topology (Aarhus, 1998), pp. 377–393. Contemp. Math., 258. Amer. Math. Soc., Providence, RI, 2000.
  • Waldhausen, F. & Vogell, W., Spaces of PL manifolds and categories of simple maps (the non-manifold part). Preprint, Bielefeld University, 2000.
  • Waldhausen, F. & Vogell, W., Spaces of PL manifolds and categories of simple maps (the manifold part). Preprint, Bielefeld University, 2000.
  • Weiss, M. & Williams, B., Assembly, in Novikov Conjectures, Index Theorems and Rigidity, Vol. 2 (Oberwolfach, 1993), pp. 332–352. London Math. Soc. Lecture Note Ser., 227. Cambridge Univ. Press, Cambridge, 1995.
  • — Pro-excisive functors, in Novikov Conjectures, Index Theorems and Rigidity, Vol. 2 (Oberwolfach, 1993), pp. 353–364. London Math. Soc. Lecture Note Ser., 227. Cambridge Univ. Press, Cambridge, 1995.