Acta Mathematica

Clique is hard to approximate within n1−ε

Johan Håstad

Full-text: Open access

Article information

Source
Acta Math., Volume 182, Number 1 (1999), 105-142.

Dates
Received: 20 August 1997
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891205

Digital Object Identifier
doi:10.1007/BF02392825

Mathematical Reviews number (MathSciNet)
MR1687331

Rights
1999 © Institut Mittag-Leffler

Citation

Håstad, Johan. Clique is hard to approximate within n 1−ε. Acta Math. 182 (1999), no. 1, 105--142. doi:10.1007/BF02392825. https://projecteuclid.org/euclid.acta/1485891205


Export citation

References

  • Arora, S., Lund, C., Motwani, R., Sudan, M. & Szegedy, M., Proof verification and the hardness of approximation problems, in 33rd Annual IEEE Symposium on Foundations of Computer Science (Pittsburgh, PA, 1992), pp. 14–23. To appear in J. ACM.
  • Arora, S. & Safra, S., Probabilistic checking of proofs: a new characterization of NP. J. ACM, 45 (1998), 70–122.
  • Babai, L., Trading group theory for randomness, in 17th Annual ACM Symposium on Theory of Computing (Providence, RI, 1985), pp. 420–429.
  • Babai, L., Fortnow, L., Levin, L. & Szegedy, M., Checking computations in polynomial time, in 23rd Annual ACM Symposium on Theory of Computing (New Orleans, LA, 1991), pp. 21–31.
  • Babai, L., Fortnow, L. & Lund, C., Nondeterministic exponential time has two-prover interactive protocols. Comput. Complexity, 1 (1991), 3–40.
  • Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M. & Sudan, M., Linearity testing in characteristic two. IEEE Trans. Inform. Theory, 42 (1996), 1781–1796.
  • Bellare, M., Goldreich, O. & Sudan, M., Free bits PCPs and nonapproximability—towards tight results. SIAM J. Comput., 27 (1998), 804–915.
  • Bellare, M., Goldwasser, S., Lund, C. & Russell, A., Efficient probabilistically checkable proofs and applications to approximation, in 25th Annual ACM Symposium on Theory of Computing (San Diego, CA, 1993), pp. 294–304.
  • Bellare, M. & Sudan, M., Improved nonapproximability results, in 26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 184–193.
  • Ben-Or, M., Goldwasser, S., Kilian, J. & Wigderson, A., Multiprover interactive proofs. How to remove intractability, in 20th Annual ACM Symposium on Theory of Computing (Chicago, IL, 1988), pp. 113–131.
  • Berman, P. & Schnitger, G., On the complexity of approximating the independent set problem. Inform. and Comput., 96 (1992), 77–94.
  • Boppana, R. & Halldórsson, M., Approximating maximum independent sets by excluding subgraphs. BIT, 32 (1992), 180–196.
  • Bourgain, J., Walsh subspaces of Lp-product spaces, in Seminaire d'analyse fonctionnelle (1979–1980), pp. 4.1–4.9. École Polytechnique, Palaiseau, 1980.
  • Cook, S. A., The complexity of theorem proving procedure, in 3rd Annual ACM Symposium on Theory of Computing (1971), pp. 151–158.
  • Feige, U., A threshold of ln n for approximating set cover, in 28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 314–318. To appear in J. ACM.
  • Feige, U. & Goemans, M., Approximating the value of two-prover proof systems, with applications to MAX 2SAT and MAX DICUT, in 3rd Israel Symposium on the Theory of Computing and Systems (Tel Aviv, 1995), pp. 182–189. IEEE Comput. Soc. Press, Los Alamitos, CA, 1995.
  • Feige, U., Goldwasser, S., Lovász, L., Safra, S. & Szegedy, M., Interactive proofs and the hardness of approximating cliques. J. ACM, 43 (1996), 268–292.
  • Feige, U. & Kilian, J., Two prover protocols—Low error at affordable rates, in 26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 172–183.
  • Feige, U., Zero-knowledge and the chromatic number, in 11th Annual IEEE Conference on Computational Complexity (Philadelphia, PA, 1996), pp. 278–287.
  • Fortnow, L., Rompel, J. & Sipser, M., On the power of multi-prover interactive protocols, in 3rd IEEE Symposium on Structure in Complexity Theory (1988), pp. 156–161.
  • Garey, M. R. & Johnson, D. S., Computers and Intractability. A Guide to the Theory of NP-completeness. W. H. Freeman, San Fransisco, CA, 1979.
  • Goemans, M. & Williamson, D., 878-approximation algorithms for Max-Cut and Max-2-SAT, in 26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 422–431.
  • Goldwasser, S., Micali, S. & Rackoff, C., The knowledge complexity of interactive proof systems. SIAM J. Comput., 18 (1989), 186–208.
  • Håstad, J., Testing of the long code and hardness for clique, in 28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 11–19. ACM, New York, 1996.
  • —, Clique is hard to approximate within n1−ε in 37th Annual IEEE Symposium on Foundations of Computer Science (Burlington, VT, 1996), pp. 627–636. IEEE Comput. Soc. Press, Les Alamitos, CA, 1996.
  • Håstad, J., Some optimal in-approximability results, in 29th Annual ACM Symposium on Theory of Computing (1997), pp. 1–10.
  • Johnson, D. S., Approximation algorithms for combinatorial, problems. J. Comput. System Sci., 9 (1974), 256–278.
  • Lund, C., Fortnow, L., Karloff, H. & Nisan, N., Algebraic methods for interactive proof systems. J. ACM, 39 (1992), 859–868.
  • Motwani, R. & Raghavan, P., Randomized Algorithms. Cambridge Univ. Press, Cambridge, 1995.
  • Papadimitriou, C., Computational Complexity. Addison-Wesley, Reading, MA, 1994.
  • Papadimitriou, C. & Yannakakis, M. Optimization, approximation and complexity classes, J. Comput. System Sci., 43 (1991), 425–440.
  • Raz, R., A parallel repetition theorem. SIAM J. Comput. 27 (1998), 763–803.
  • Shamir, A., IP=PSPACE. J. ACM, 39 (1992), 869–877.
  • Zuckerman, D., On unapproximable versions of NP-complete problems. SIAM J. Comput., 25 (1996), 1293–1304.