Acta Mathematica

On the stokes conjecture for the wave of extreme form

C. J. Amick, L. E. Fraenkel, and J. F. Toland

Full-text: Open access

Article information

Acta Math., Volume 148 (1982), 193-214.

Received: 6 July 1981
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1982 © Almqvist & Wiksell


Amick, C. J.; Fraenkel, L. E.; Toland, J. F. On the stokes conjecture for the wave of extreme form. Acta Math. 148 (1982), 193--214. doi:10.1007/BF02392728.

Export citation


  • Amick, C. J. & Fraenkel, L. E., On the behaviour near the creast of waves of extreme form. To appear.
  • Amick, C. J. & Toland, J. F., On solitary water-waves of finite amplitude. Arch. Rational Math. Anal., 76 (1981), 9–95.
  • — On periodic water-waves and their convergence to solitary waves in the long-wave limit. Math. Research Center report no. 2127 (1981), University of Wisconsin, Madison. Also, Philos. Trans. Roy. Soc. London, A 303 (1981), 633–669.
  • Cokelet, E. D., Steep gravity waves in water of arbitrary uniform depth. Philos. Trans. Roy. Soc. London, A 286 (1977), 183–230.
  • Keady, G. & Norbury, J., On the existence theory for irrotational water waves. Math. Proc. Cambridge Philos. Soc., 83 (1978), 137–157.
  • Krasovskii, Yu. P., On the theory of steady-state waves of large amplitude. U.S.S.R. Computational Math. and Math. Phys., 1 (1961), 996–1018.
  • Longuet-Higgins, M. S. & Fox, M. J. H., Theory of the almost highest wave: the inner solution. J. Fluid Mech., 80 (1977), 721–742.
  • McLeod, J. B., The Stokes and Krasovskii conjectures for the wave of greatest height. Math. Research Center report no. 2041 (1979), University of Wisconsin, Madison. Also to appear in Math. Proc. Cambridge Philos. Soc.
  • Stokes, G. G., On the theory of oscillatory waves. Trans. Cambridge Philos. Soc. 8 (1847), 441–455. Also, Mathematical and physical papers, vol. I. pp. 197–219, Cambridge, 1880.
  • —, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Mathematical and physical papers., vol. I, pp. 225–228, Cambridge, 1880.
  • Toland, J. F., On the existence of a wave of greatest height and Stokes's conjecture. Proc. Roy. Soc. London, A 363 (1978), 469–485.