Acta Mathematica

The thick-thin decomposition and the bilipschitz classification of normal surface singularities

Lev Birbrair, Walter D. Neumann, and Anne Pichon

Full-text: Open access

Abstract

We describe a natural decomposition of a normal complex surface singularity (X, 0) into its “thick” and “thin” parts. The former is essentially metrically conical, while the latter shrinks rapidly in thickness as it approaches the origin. The thin part is empty if and only if the singularity is metrically conical; the link of the singularity is then Seifert fibered. In general the thin part will not be empty, in which case it always carries essential topology. Our decomposition has some analogy with the Margulis thick-thin decomposition for a negatively curved manifold. However, the geometric behavior is very different; for example, often most of the topology of a normal surface singularity is concentrated in the thin parts.

By refining the thick-thin decomposition, we then give a complete description of the intrinsic bilipschitz geometry of (X, 0) in terms of its topology and a finite list of numerical bilipschitz invariants.

Article information

Source
Acta Math., Volume 212, Number 2 (2014), 199-256.

Dates
Received: 19 January 2012
Revised: 21 June 2013
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485801811

Digital Object Identifier
doi:10.1007/s11511-014-0111-8

Mathematical Reviews number (MathSciNet)
MR3207758

Zentralblatt MATH identifier
1303.14016

Subjects
Primary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx]
Secondary: 32S25: Surface and hypersurface singularities [See also 14J17] 32S05: Local singularities [See also 14J17] 57M99: None of the above, but in this section

Keywords
bilipschitz geometry normal surface singularity thick-thin decomposition

Rights
2014 © Institut Mittag-Leffler

Citation

Birbrair, Lev; Neumann, Walter D.; Pichon, Anne. The thick-thin decomposition and the bilipschitz classification of normal surface singularities. Acta Math. 212 (2014), no. 2, 199--256. doi:10.1007/s11511-014-0111-8. https://projecteuclid.org/euclid.acta/1485801811


Export citation

References

  • BernigA. Lytchak A.: Tangent spaces and Gromov–Hausdor limits of subanalytic spaces. J. Reine Angew. Math., 608, 1–15 (2007)
  • Birbrair, L. & Fernandes, A., Inner metric geometry of complex algebraic surfaces with isolated singularities. Comm. Pure Appl. Math., 61:11 (2008), 1483–1494.
  • Birbrair L., Fernandes A., Neumann W.D.: Bi-Lipschitz geometry of weighted homogeneous surface singularities. Math. Ann., 342, 139–144 (2008)
  • Birbrair L., Fernandes A., Neumann W.D.: Bi-Lipschitz geometry of complex surface singularities. Geom. Dedicata, 139, 259–267 (2009)
  • Birbrair L., Fernandes A., Neumann W.D.: Separating sets, metric tangent cone and applications for complex algebraic germs. Selecta Math., 16, 377–391 (2010)
  • Boutot J.-F.: Singularités rationnelles et quotients par les groupes réductifs. Invent. Math., 88, 65–68 (1987)
  • Briançon, J. & Henry, J.P. G., équisingularité générique des familles de surfaces à singularité isolée. Bull. Soc. Math. France, 108 (1980), 259–281.
  • Durfee A.H.: Neighborhoods of algebraic sets. Trans. Amer. Math. Soc., 276, 517–530 (1983)
  • Eisenbud, D. & Neumann, W., Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Annals of Mathematics Studies, 110. Princeton University Press, Princeton, NJ, 1985.
  • Fernandes A.: Topological equivalence of complex curves and bi-Lipschitz homeomorphisms. Michigan Math. J., 51, 593–606 (2003)
  • Gonzalez-Sprinberg, G., Résolution de Nash des points doubles rationnels. Ann. Inst. Fourier (Grenoble), 32:2 (1982), 111–178.
  • Hirzebruch, F., über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen. Math. Ann., 126 (1953), 1–22.
  • Hirzebruch F.: Hilbert modular surfaces. Enseign. Math., 19, 183–281 (1973)
  • Hirzebruch, F., Neumann, W. D. & Koh, S. S., Differentiable Manifolds and Quadratic Forms. Lecture Notes in Pure and Applied Mathematics, 4. Marcel Dekker, New York, 1971.
  • Hochster M, Roberts J. L.: Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay. Adv. Math., 13, 115–175 (1974)
  • Hsiang, W. C. & Pati, V., L2-cohomology of normal algebraic surfaces. I. Invent. Math., 81 (1985), 395–412.
  • Jaco, W. H. & Shalen, P. B., Seifert fibered spaces in 3-manifolds. Mem. Amer. Math. Soc., 21 (1979).
  • Kähler, E., über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle. Math. Z., 30 (1929), 188–204.
  • Lê Dũng Tràng, The geometry of the monodromy theorem, in C. P. Ramanujam—A Tribute, Tata Inst. Fund. Res. Studies in Math., 8, pp. 157–173. Springer, Berlin–Heidelberg, 1978.
  • Lê Dũng Tràng, Maugendre, H. & Weber, C., Geometry of critical loci. J. London Math. Soc., 63 (2001), 533–552.
  • Lê Dũng Tràng, Michel, F. & Weber, C., Courbes polaires et topologie des courbes planes. Ann. Sci. École Norm. Sup., 24 (1991), 141–169.
  • Lê Dũng Tràng & Teissier, B., Variétés polaires locales et classes de Chern des variété ssingulières. Ann. of Math., 114 (1981), 457–491.
  • Lê Dũng Tràng & Teissier, B., Limites d’espaces tangents en géométrie analytique. Comment. Math. Helv., 63 (1988), 540–578.
  • Luengo, I., The μ-constant stratum is not smooth. Invent. Math., 90 (1987), 139–152.
  • Luengo, I., Melle-HernÁndez, A. & Némethi, A., Links and analytic invariants of superisolated singularities. J. Algebraic Geom., 14 (2005), 543–565.
  • Mendris, R. & Némethi, A., The link of f(x; y) + zn = 0 and Zariski’s conjecture. Com-pos. Math., 141 (2005), 502–524.
  • Michel, F., Jacobian curves for normal complex surfaces, in Singularities II, Contemp. Math., 475, pp. 135–150. Amer. Math. Soc., Providence, RI, 2008.
  • Michel, F., Pichon, A. & Weber, C., The boundary of the Milnor Fiber for some nonisolated singularities of complex surfaces. Osaka J. Math., 46 (2009), 291–316.
  • Milnor, J., Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, 61. Princeton University Press, Princeton, NJ, 1968.
  • Mostowski, T., Lipschitz equisingularity. Dissertationes Math. (Rozprawy Mat.), 243 (1985).
  • Mostowski, T., Tangent cones and Lipschitz stratifications, in Singularities (Warsaw, 1985), Banach Center Publ., 20, pp. 303–322. PWN, Warsaw, 1988.
  • Nagase M.: Remarks on the L^2-cohomology of singular algebraic surfaces. J. Math. Soc. Japan, 41, 97–116 (1989)
  • Neumann W.D.: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Amer. Math. Soc., 268, 299–344 (1981)
  • Neumann, W. D. & Swarup, G. A., Canonical decompositions of 3-manifolds. Geom. Topol., 1 (1997), 21–40.
  • Parusiński, A., Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble), 38:4 (1988), 189–213.
  • Parusiński A.: Lipschitz stratification of subanalytic sets. Ann. Sci. École Norm. Sup., 27, 661–696 (1994)
  • Pedersen, H. M., Classifying metrically conical rational singularities. Preprint, 2011.
  • Pham, F. P. & Teissier, B., Fractions Lipschitziennes d’une algebre analytique complexe et saturation de Zariski. Prépublications école Polytechnique No. M17.0669. Paris, 1969.
  • Pichon, A., Fibrations sur le cercle et surfaces complexes. Ann. Inst. Fourie(Grenoble), 51:2 (2001), 337–374.
  • Roussarie, R., Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie. Inst. Hautes Études Sci. Publ. Math., 43 (1974), 101–141.
  • Siebenmann, L. & Sullivan, D., On complexes that are Lipschitz manifolds, in Geometric Topology (Athens, GA, 1977), pp. 503–525. Academic Press, New York, 1979.
  • Snoussi J.: Limites d’espaces tangents à une surface normale. Comment. Math. Helv., 76, 61–88 (2001)
  • Spivakovsky M.: Sandwiched singularities and desingularization of surfaces by normalized Nash transformations. Ann. of Math., 131, 411–491 (1990)
  • Stallings, J., On fibering certain 3-manifolds, in Topology of 3-Manifolds and Related Topics (Proc. The Univ. of Georgia Institute, 1961), pp. 95–100. Prentice-Hall, Englewood Cli s, NJ, 1962.
  • Teissier, B., Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, in Algebraic Geometry (La Rábida, 1981), Lecture Notes in Math., 961, pp. 314–491. Springer, Berlin–Heidelberg, 1982.
  • Thurston, W. P., Foliations of 3-Manifolds which are Circle Bundles. Ph.D. Thesis, University of California, Berkeley, 1972.
  • Valette, G., The link of the germ of a semi-algebraic metric space. Proc. Amer. Math. Soc., 135:10 (2007), 3083–3090.
  • Waldhausen F.: On irreducible 3-manifolds which are suffciently large. Ann. of Math., 87, 56–88 (1968)