Abstract and Applied Analysis

Discussion on α - ψ Contractions on Generalized Metric Spaces

Erdal Karapınar

Full-text: Open access

Abstract

We discuss the existence and uniqueness of fixed points of α - ψ contractive mappings in complete generalized metric spaces, introduced by Branciari. Our results generalize and improve several results in the literature.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 962784, 7 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412606986

Digital Object Identifier
doi:10.1155/2014/962784

Mathematical Reviews number (MathSciNet)
MR3173299

Zentralblatt MATH identifier
07023407

Citation

Karapınar, Erdal. Discussion on $\alpha -\psi $ Contractions on Generalized Metric Spaces. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 962784, 7 pages. doi:10.1155/2014/962784. https://projecteuclid.org/euclid.aaa/1412606986


Export citation

References

  • A. Branciari, “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces,” Publicationes Mathematicae Debrecen, vol. 57, no. 1-2, pp. 31–37, 2000.
  • B. Samet, “Discussion on “a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari,” Publicationes Mathematicae Debrecen, vol. 76, no. 4, pp. 493–494, 2010.
  • M. Jleli and B. Samet, “The Kannan's fixed point theorem in a cone rectangular metric space,” The Journal of Nonlinear Sciences and Applications, vol. 2, no. 3, pp. 161–167, 2009.
  • W. A. Kirk and N. Shahzad, “Generalized metrics and Caristis theorem,” Fixed Point Theory and Applications, vol. 2013, article 129, 2013.
  • L. Kikina and K. Kikina, “A fixed point theorem in generalized metric spaces,” Demonstratio Mathematica, vol. 46, no. 1, pp. 181–190, 2013.
  • W. A. Wilson, “On semi-metric spaces,” The American Journal of Mathematics, vol. 53, no. 2, pp. 361–373, 1931.
  • P. Das and L. K. Dey, “Fixed point of contractive mappings in generalized metric spaces,” Mathematica Slovaca, vol. 59, no. 4, pp. 499–504, 2009.
  • H. Lakzian and B. Samet, “Fixed points for $(\psi ,\varphi )$-weakly contractive mappings in generalized metric spaces,” Applied Mathematics Letters, vol. 25, no. 5, pp. 902–906, 2012.
  • H. Aydi, E. Karapinar, and H. Lakzian, “Fixed point results on a class of generalized metric spaces,” Mathematical Sciences, vol. 6, no. 1, article 46, pp. 1–6, 2012.
  • N. Bilgili, E. Karapinar, and D. Turkoglu, “A note on common fixed points for $(\psi ,\alpha ,\beta )$-weakly contractive mappings in generalized metric spaces,” Fixed Point Theory and Applications, vol. 2013, article 287, 2013.
  • C.-M. Chen and W. Y. Sun, “Periodic points for the weak contraction mappings in complete generalized metric spaces,” Fixed Point Theory and Applications, vol. 2012, article 79, 2012.
  • I. Erhan, E. Karapinar, and T. Sekulić, “Fixed points of $(\psi ,\phi )$ contractions on rectangular metric spaces,” Fixed Point Theory and Applications, vol. 2012, article 138, 2012.
  • D. Miheţ, “On Kannan fixed point principle in generalized metric spaces,” The Journal of Nonlinear Science and Its Applications, vol. 2, no. 2, pp. 92–96, 2009.
  • B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for $\alpha $-$\psi $-contractive type mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no. 4, pp. 2154–2165, 2012.
  • M. U. Ali, T. Kamran, and E. Karapinar, “$(\alpha ,\psi ,\xi )$-contractive multivalued mappings,” Fixed Point Theory and Applications, vol. 2014, article 7, 2014.
  • M. Jleli, E. Karap\inar, and B. Samet, “Best proximity points for generalized $(\alpha ,\psi )$-proximal contractive type mappings,” Journal of Applied Mathematics, vol. 2013, Article ID 534127, 10 pages, 2013.
  • M. Jleli, E. Karap\inar, and B. Samet, “Fixed point results for $\alpha \text{-}{\psi }_{\lambda }$contractions on gauge spaces and applications,” Abstract and Applied Analysis, vol. 2013, Article ID 730825, 7 pages, 2013.
  • E. Karap\inar and B. Samet, “Generalized $\alpha $-$\psi $-contractive type mappings and related fixed point theorems with applications,” Abstract and Applied Analysis, vol. 2012, Article ID 793486, 17 pages, 2012.
  • B. Mohammadi, S. Rezapour, and N. Shahzad, “Some results on fixed points of $\alpha $-$\psi $-Ciric generalized multifunctions,” Fixed Point Theory and Applications, vol. 2013, article 24, 2013.
  • R. M. Bianchini and M. Grandolfi, “Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico,” ATTI Della Accademia Nazionale Dei Lincei, vol. 45, pp. 212–216, 1968.
  • P. D. Proinov, “A generalization of the Banach contraction principle with high order of convergence of successive approximations,” Nonlinear Analysis: Theory, Methods and Applications, vol. 67, no. 8, pp. 2361–2369, 2007.
  • P. D. Proinov, “New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems,” Journal of Complexity, vol. 26, no. 1, pp. 3–42, 2010.
  • I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
  • M. Berzig and M. Rus, “Fixed point theorems for $\alpha $-contractive mappings of Meir-Keeler type and applications,” http://arxiv.org/abs/1303.5798.
  • M. Berzig and E. Karap\inar, “Fixed point results for $(\alpha \psi -\alpha \phi )$-contractive mappings for a generalized altering distance,” Fixed Point Theory and Applications, vol. 2013, article 205, 2013. \endinput