Abstract and Applied Analysis

Strong Duality and Optimality Conditions for Generalized Equilibrium Problems

D. H. Fang and J. F. Bao

Full-text: Open access

Abstract

We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for generalized equilibrium problems are provided.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 176363, 8 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449685

Digital Object Identifier
doi:10.1155/2013/176363

Mathematical Reviews number (MathSciNet)
MR3111799

Zentralblatt MATH identifier
1302.90223

Citation

Fang, D. H.; Bao, J. F. Strong Duality and Optimality Conditions for Generalized Equilibrium Problems. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 176363, 8 pages. doi:10.1155/2013/176363. https://projecteuclid.org/euclid.aaa/1393449685


Export citation

References

  • C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, River Edge, NJ, USA, 2002.
  • M. A. Noor and K. I. Noor, “On equilibrium problems,” Applied Mathematics E-Notes, vol. 4, pp. 125–132, 2004.
  • G. Bigi, M. Castellani, and G. Kassay, “A dual view of equilibrium problems,” Journal of Mathematical Analysis and Applications, vol. 342, no. 1, pp. 17–26, 2008.
  • E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.
  • N. Dinh, J. J. Strodiot, and V. H. Nguyen, “Duality and optimality conditions for generalized equilibrium problems involving DC functions,” Journal of Global Optimization, vol. 48, no. 2, pp.183–208, 2010.
  • D. H. Fang, C. Li, and K. F. Ng, “Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming,” SIAM Journal on Optimization, vol. 20, no. 3, pp. 1311–1332, 2009.
  • A. N. Iusem and W. Sosa, “Iterative algorithms for equilibrium problems,” Optimization, vol. 52, no. 3, pp. 301–316, 2003.
  • L. D. Muu, V. H. Nguyen, and N. V. Quy, “On Nash-Cournot oligopolistic market equilibrium models with concave cost functions,” Journal of Global Optimization, vol. 41, no. 3, pp. 351–364, 2008.
  • L. D. Muu and W. Oettli, “Convergence of an adaptive penalty scheme for finding constrained equilibria,” Nonlinear Analysis. Theory, Methods & Applications, vol. 18, no. 12, pp. 1159–1166, 1992.
  • T. T. V. Nguyen, J. J. Strodiot, and V. H. Nguyen, “A bundle method for solving equilibrium problems,” Mathematical Programming, vol. 116, no. 1-2, pp. 529–552, 2009.
  • I. V. Konnov and S. Schaible, “Duality for equilibrium problems under generalized monotonicity,” Journal of Optimization Theory and Applications, vol. 104, no. 2, pp. 395–408, 2000.
  • J. E. Martínez-Legaz and W. Sosa, “Duality for equilibrium problems,” Journal of Global Optimization, vol. 35, no. 2, pp. 311–319, 2006.
  • F. M. O. Jacinto and S. Scheimberg, “Duality for generalized equilibrium problem,” Optimization, vol. 57, no. 6, pp. 795–805, 2008.
  • L. Altangerel, R. I. Boţ, and G. Wanka, “On the construction of gap functions for variational inequalities via conjugate duality,” Asia-Pacific Journal of Operational Research, vol. 24, no. 3, pp. 353–371, 2007.
  • L. Altangerel, R. I. Boţ, and G. Wanka, “On gap functions for equilibrium problems via Fenchel duality,” Pacific Journal of Optimization, vol. 2, no. 3, pp. 667–678, 2006.
  • U. Mosco, “Dual variational inequalities,” Journal of Mathematical Analysis and Applications, vol. 40, pp. 202–206, 1972.
  • D. H. Fang, C. Li, and X. Q. Yang, “Stable and total Fenchel duality for DC optimization problems in locally convex spaces,” SIAM Journal on Optimization, vol. 21, no. 3, pp. 730–760, 2011.
  • B. S. Mordukhovich, N. M. Nam, and N. D. Yen, “Fréchet subdifferential calculus and optimality conditions in nondifferentiableprogramming,” Optimization, vol. 55, no. 5-6, pp. 685–708, 2006.
  • B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, vol. 330, Springer, Berlin, Germany, 2006.