Abstract and Applied Analysis

Approximate Preservers on Banach Algebras and C*-Algebras

M. Burgos, A. C. Márquez-García, and A. Morales-Campoy

Full-text: Open access

Abstract

The aim of the present paper is to give approximate versions of Hua’s theorem and other related results for Banach algebras and C*-algebras. We also study linear maps approximately preserving the conorm between unital C*-algebras.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 757646, 12 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449675

Digital Object Identifier
doi:10.1155/2013/757646

Mathematical Reviews number (MathSciNet)
MR3139456

Zentralblatt MATH identifier
07095331

Citation

Burgos, M.; Márquez-García, A. C.; Morales-Campoy, A. Approximate Preservers on Banach Algebras and C *-Algebras. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 757646, 12 pages. doi:10.1155/2013/757646. https://projecteuclid.org/euclid.aaa/1393449675


Export citation

References

  • L.-K. Hua, “On the automorphisms of a sfield,” Proceedings of the National Academy of Sciences of the United States of America, vol. 35, pp. 386–389, 1949.
  • H. Essannouni and A. Kaidi, “Le théorème de Hua pour les algèbres artiniennes simples,” Linear Algebra and Its Applications, vol. 297, no. 1–3, pp. 9–22, 1999.
  • M. Mbekhta, “A Hua type theorem and linear preserver problems,” Mathematical Proceedings of the Royal Irish Academy, vol. 109, no. 2, pp. 109–121, 2009.
  • N. Boudi and M. Mbekhta, “Additive maps preserving strongly generalized inverses,” Journal of Operator Theory, vol. 64, no. 1, pp. 117–130, 2010.
  • M. P. Drazin, “Pseudo-inverses in associative rings and semigroups,” The American Mathematical Monthly, vol. 65, pp. 506–514, 1958.
  • A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer, New York, NY, USA, Second edition, 2003.
  • S. L. Campbell, Recent Applications of Generalized Inverses, Academic Press, New York, NY, USA, 1982.
  • J. Cui, “Additive Drazin inverse preservers,” Linear Algebra and Its Applications, vol. 426, no. 2-3, pp. 448–453, 2007.
  • M. Burgos, A. C. Márquez-García, and A. Morales-Campoy, “Strongly preserver problems in Banach algebras and C$^{\ast\,\!}$-algebras,” Linear Algebra and Its Applications, vol. 437, no. 5, pp. 1183–1193, 2012.
  • R. Harte and M. Mbekhta, “On generalized inverses in C$^{\ast\,\!}$-algebras,” Studia Mathematica, vol. 103, no. 1, pp. 71–77, 1992.
  • R. Harte and M. Mbekhta, “Generalized inverses in C$^{\ast\,\!}$-algebras. II,” Studia Mathematica, vol. 106, no. 2, pp. 129–138, 1993.
  • M. Burgos, A. C. Márquez-García, and A. Morales-Campoy, “Linear maps strongly preserving Moore-Penrose invertibility,” Operators and Matrices, vol. 6, no. 4, pp. 819–831, 2012.
  • M. Burgos, E. A. Kaidi, A. M. Campoy, A. M. Peralta, and M. Ramírez, “Von Neumann regularity and quadratic conorms in JB$^{\ast\,\!}$-triples and C$^{\ast\,\!}$-algebras,” Acta Mathematica Sinica, vol. 24, no. 2, pp. 185–200, 2008.
  • A. Fernández López, E. García Rus, E. Sánchez Campos, and M. Siles Molina, “Strong regularity and generalized inverses in Jordan systems,” Communications in Algebra, vol. 20, no. 7, pp. 1917–1936, 1992.
  • W. Kaup, “On spectral and singular values in JB$^{\ast\,\!}$-triples,” Proceedings of the Royal Irish Academy. Section A. Mathematical and Physical Sciences, vol. 96, no. 1, pp. 95–103, 1996.
  • W. Kaup, “On Grassmannians associated with JB$^{\ast\,\!}$-triples,” Mathematische Zeitschrift, vol. 236, no. 3, pp. 567–584, 2001.
  • O. Loos, Jordan Pairs, vol. 460 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1975.
  • A. R. Sourour, “Invertibility preserving linear maps on $L(X)$,” Transactions of the American Mathematical Society, vol. 348, no. 1, pp. 13–30, 1996.
  • I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, American Mathematical Society, Providence, RI, USA, 1970.
  • B. Aupetit, “Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras,” Journal of the London Mathematical Society, vol. 62, no. 3, pp. 917–924, 2000.
  • M. Brešar, A. Fošner, and P. Šemrl, “A note on invertibility preservers on Banach algebras,” Proceedings of the American Mathematical Society, vol. 131, no. 12, pp. 3833–3837, 2003.
  • A. A. Jafarian and A. R. Sourour, “Spectrum-preserving linear maps,” Journal of Functional Analysis, vol. 66, no. 2, pp. 255–261, 1986.
  • J.-P. Kahane and W. Żelazko, “A characterization of maximal ideals in commutative Banach algebras,” Studia Mathematica, vol. 29, pp. 339–343, 1968.
  • I. Kovacs, “Invertibility-preserving maps of C$^{\ast\,\!}$-algebras with real rank zero,” Abstract and Applied Analysis, no. 6, pp. 685–689, 2005.
  • B. E. Johnson, “Approximately multiplicative functionals,” Journal of the London Mathematical Society, vol. 34, no. 3, pp. 489–510, 1986.
  • S. H. Kulkarni and D. Sukumar, “Almost multiplicative functions on commutative Banach algebras,” Studia Mathematica, vol. 152, pp. 187–199, 2002.
  • J. Alaminos, J. Extremera, and A. R. Villena, “Approximately spectrum-preserving maps,” Journal of Functional Analysis, vol. 261, no. 1, pp. 233–266, 2011.
  • J. Alaminos, J. Extremera, and A. R. Villena, “Spectral preserversčommentComment on ref. [2?]: Please update the information of these references [2, 12?], if possible. and approximate spectral preservers on operator algebras,” In press.
  • B. E. Johnson, “Approximately multiplicative maps between Banach algebras,” Journal of the London Mathematical Society, vol. 37, no. 2, pp. 294–316, 1988.
  • A. Bourhim, M. Burgos, and V. S. Shulman, “Linear maps preserving the minimum and reduced minimum moduli,” Journal of Functional Analysis, vol. 258, no. 1, pp. 50–66, 2010.
  • S. Heinrich, “Ultraproducts in Banach space theory,” Journal für die Reine und Angewandte Mathematik, vol. 313, pp. 72–104, 1980.
  • M. Burgos, A. C. Márquez-García, and A. Morales-Campoy, “Determining Jordan (triple) homomorphisms by invertibility preserving conditions,” In press.
  • N. Jacobson, Structure and Representations of Jordan Algebras, American Mathematical Society Colloquium, Providence, RI, USA, 1968.
  • M. Burgos, F. J. Fernández-Polo, J. J. Garcés, J. Martínez Moreno, and A. M. Peralta, “Orthogonality preservers in C$^{\ast\,\!}$-algebras, JB$^{\ast\,\!}$-algebras and JB$^{\ast\,\!}$-triples,” Journal of Mathematical Analysis and Applications, vol. 348, no. 1, pp. 220–233, 2008.
  • R. V. Kadison, “A generalized Schwarz inequality and algebraic invariants for operator algebras,” Annals of Mathematics, vol. 56, pp. 494–503, 1952.
  • V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, vol. 139 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 2003.
  • M.-D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, “On positive linear maps preserving invertibility,” Journal of Functional Analysis, vol. 59, no. 3, pp. 462–469, 1984.