Abstract and Applied Analysis

On Fixed Points of α - ψ -Contractive Multivalued Mappings in Cone Metric Spaces

Marwan Amin Kutbi, Jamshaid Ahmad, and Akbar Azam

Full-text: Open access

Abstract

We define the notion of α * - ψ -contractive mappings for cone metric space and obtain fixed points of multivalued mappings in connection with Hausdorff distance function for closed bounded subsets of cone metric spaces. We obtain some recent results of the literature as corollaries of our main theorem. Moreover, a nontrivial example of α * - ψ -contractive mapping satisfying all conditions of our main result has been constructed.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 313782, 6 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393442133

Digital Object Identifier
doi:10.1155/2013/313782

Mathematical Reviews number (MathSciNet)
MR3126764

Zentralblatt MATH identifier
1294.54029

Citation

Kutbi, Marwan Amin; Ahmad, Jamshaid; Azam, Akbar. On Fixed Points of $\alpha \text{-}\psi $ -Contractive Multivalued Mappings in Cone Metric Spaces. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 313782, 6 pages. doi:10.1155/2013/313782. https://projecteuclid.org/euclid.aaa/1393442133


Export citation

References

  • L.-G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,” Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468–1476, 2007.
  • Sh. Rezapour and R. Hamlbarani, “Some notes on the paper `Cone metric spaces and fixed point theorems of contractive mappings',” Journal of Mathematical Analysis and Applications, vol. 345, pp. 719–724, 2008.
  • S. Jankovi, Z. Kadelburg, and S. Radenovi, “On cone metric spaces: a survey,” Nonlinear Analysis, Theory, Methods & Applications, vol. 74, no. 7, pp. 2591–2601, 2011.
  • A. Azam and N. Mehmood, “Multivalued fixed point theorems in tvs-cone metric spaces,” Fixed Point Theory and Applications, vol. 2013, article 184, 2013.
  • S. H. Cho and J. S. Bae, “Fixed point theorems for multi-valued maps in cone metric spaces,” Fixed Point Theory and Applications, vol. 2011, p. 87, 2011.
  • N. Mizoguchi and W. Takahashi, “Fixed point theorems for multivalued mappings on complete metric spaces,” Journal of Mathematical Analysis and Applications, vol. 141, no. 1, pp. 177–188, 1989.
  • B. Samet, C. Vetro, and P. Vetro, “Fixed point theorem for $\alpha -\psi $ contractive type mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, pp. 2154–2165, 2012.
  • E. Karapinar, P. Kumam, and P. Salimi, “On $\alpha $-$\psi $-Meir-Keeler contractive mappings,” Fixed Point Theory and Applications, vol. 2013, p. 94, 2013.
  • M. Arshad and J. Ahmad, “On multivalued contractions in cone metric spaces without normality,” The Scientific World Journal, vol. 2013, Article ID 481601, 3 pages, 2013.
  • H. Aydi, “A common fixed point result for a $(\psi ,\varphi )$-weak contractive condition type,” Journal of Applied Mathematics & Informatics, vol. 30, pp. 809–820, 2012.
  • A. Azam and M. Arshad, “Fixed points of a sequence of locally contractive multivalued maps,” Computers and Mathematics with Applications, vol. 57, no. 1, pp. 96–100, 2009.
  • I. Beg and A. Azam, “Fixed points of asymptotically regular multivalued mappings,” Journal of the Australian Mathematical Society A, vol. 53, no. 3, pp. 313–326, 1992.
  • C.-M. Chen, “Fixed point theorems for $\psi $-contractive mappings in ordered metric spaces,” Journal of Applied Mathematics, vol. 2012, Article ID 756453, 107 pages, 2012.
  • C.-M. Chen and T.-H. Chang, “Common fixed point theorems for a weaker Meir-Keeler type function in cone metric spaces,” Applied Mathematics Letters, vol. 23, no. 11, pp. 1336–1341, 2010.
  • C. Di Bari and P. Vetro, “$\varphi $-pairs and common fixed points in cone metric spaces,” Rendiconti del Circolo Matematico di Palermo, vol. 57, no. 2, pp. 279–285, 2008.
  • W.-S. Du, “New cone fixed point theorems for nonlinear multivalued maps with their applications,” Applied Mathematics Letters, vol. 24, no. 2, pp. 172–178, 2011.
  • H. Lakzian, H. Aydi, and B. E. Rhoades:, “Fixed points for $(\varphi ,\psi ,p)$-weakly contractive mappings in metric spaces with $\omega $-distance,” Applied Mathematics and Computation, vol. 219, no. 12, pp. 6777–6782, 2013.
  • E. Karapinar and B. Samet, “Generalized $(\alpha -\psi )$ contractive type mappings and related fixed point theorems with applications,” Abstract and Applied Analysis, vol. 2012, Article ID 793486, 17 pages, 2012.
  • P. Vetro, “Common fixed points in cone metric spaces,” Rendiconti del Circolo Matematico di Palermo, vol. 56, no. 3, pp. 464–468, 2007.
  • J. H. Asl, S. Rezapour, and N. Shahzad, “On fixed points of $\alpha -\psi $-contractive multifunctions,” Fixed Point Theory and Applications, vol. 2012, p. 212, 2012.
  • M. U. Ali and T. Kamran, “On (${\propto }^{\ast\,\!}-\psi $)-contractive multi-valued mappings,” Fixed Point Theory and Applications, vol. 2013, p. 137, 2013.
  • B. Mohammadi, S. Rezapour, and N. Shahzad, “Some results on fixed points of $\alpha -\psi $-Ciric generalized multifunctions,” Fixed Point Theory and Applications, vol. 2013, p. 24, 2013.
  • P. Salimi, A. Latif, and N. Hussain, “Modified $\alpha $-$\psi $-contractive mappings with applications,” Fixed Point Theory and Applications, vol. 2013, article 151, 2013.
  • C. Di Bari and P. Vetro, “Weakly $\varphi $-pairs and common fixed points in cone metric spaces,” Rendiconti del Circolo Matematico di Palermo, vol. 58, no. 1, pp. 125–132, 2009.
  • S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.