Abstract and Applied Analysis

Approximation of the Summation-Integral-Type q -Szász-Mirakjan Operators

Mei-Ying Ren and Xiao-Ming Zeng

Full-text: Open access

Abstract

We introduce summation-integral-type q -Szász-Mirakjan operators and study approximation properties of these operators. We establish local approximation theorem. We give weighted approximation theorem. Also we estimate the rate of convergence of these operators for functions of polynomial growth on the interval [ 0 , ) .

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 614810, 16 pages.

Dates
First available in Project Euclid: 28 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1364475958

Digital Object Identifier
doi:10.1155/2012/614810

Mathematical Reviews number (MathSciNet)
MR2999907

Zentralblatt MATH identifier
1312.41028

Citation

Ren, Mei-Ying; Zeng, Xiao-Ming. Approximation of the Summation-Integral-Type $q$ -Szász-Mirakjan Operators. Abstr. Appl. Anal. 2012 (2012), Article ID 614810, 16 pages. doi:10.1155/2012/614810. https://projecteuclid.org/euclid.aaa/1364475958


Export citation

References

  • G. Gasper and M. Rahman, Basic Hypergeometrik Series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, UK, 1990.
  • V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, NY, USA, 2002.
  • F. H. Jackson, “On a $q$-definite integrals,” Quarterly Journal of Pure and Applied Mathematics, vol. 41, pp. 193–203, 1910.
  • H. T. Koelink and T. H. Koornwinder, “$q$-special functions, a tutorial,” in Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), vol. 134 of Contemporary Mathematics, pp. 141–142, American Mathematical Society, Providence, RI, USA, 1992.
  • A. De Sole and V. G. Kac, “On integral representations of $q$-gamma and $q$-beta functions,” Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei, vol. 16, no. 1, pp. 11–29, 2005.
  • G. M. Phillips, “Bernstein polynomials based on the $q$-integers,” Annals of Numerical Mathematics, vol. 4, no. 1–4, pp. 511–518, 1997.
  • O. Agratini and G. Nowak, “On a generalization of Bleimann, Butzer and Hahn operators based on $q$-integers,” Mathematical and Computer Modelling, vol. 53, no. 5-6, pp. 699–706, 2011.
  • O. Doğru and M. Örkcü, “Statistical approximation by a modification of $q$-Meyer-König and Zeller operators,” Applied Mathematics Letters, vol. 23, no. 3, pp. 261–266, 2010.
  • V. Gupta and C. Radu, “Statistical approximation properties of $q$-Baskakov-Kantorovich operators,” Central European Journal of Mathematics, vol. 7, no. 4, pp. 809–818, 2009.
  • S. G. Gal, “Voronovskaja's theorem, shape preserving properties and iterations for complex $q$-Bernstein polynomials,” Studia Scientiarum Mathematicarum Hungarica, vol. 48, no. 1, pp. 23–43, 2011.
  • N. I. Mahmudov, “Approximation by genuine $q$-Bernstein-Durrmeyer polynomials in compact disks,” Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 1, pp. 77–89, 2011.
  • I. Yüksel, “Approximation by $q$-Phillips operators,” Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, pp. 191–201, 2011.
  • V. Gupta and W. Heping, “The rate of convergence of $q$-Durrmeyer operators for $0<q<1$,” Mathematical Methods in the Applied Sciences, vol. 31, no. 16, pp. 1946–1955, 2008.
  • N. I. Mahmudov and H. Kaffaoğlu, “On $q$-Szász-Durrmeyer operators,” Central European Journal of Mathematics, vol. 8, no. 2, pp. 399–409, 2010.
  • A. Aral and V. Gupta, “Generalized Szász Durrmeyer operators,” Lobachevskii Journal of Mathematics, vol. 32, no. 1, pp. 23–31, 2011.
  • R. A. DeVore and G. G. Lorentz, Constructive Approximation, vol. 303, Springer, Berlin, Germany, 1993.
  • A. D. Gadzhiev, “Theorems of the type of P. P. Korovkin type theorems,” Matematicheskie Zametki, vol. 20, no. 5, pp. 781–786, 1976, English Translation in Mathematical Notes, vol. 20, no. 5-6, pp. 996–998, 1976.
  • V. S. Videnskii, “On q-Bernstein polynomials and related positive linear operators,” in Problems of Modern Mathematics and Mathematical Education, pp. 118–126, St.-Pertersburg, Russia, 2004.
  • N. \.Ispir, “On modified Baskakov operators on weighted spaces,” Turkish Journal of Mathematics, vol. 25, no. 3, pp. 355–365, 2001.