Abstract and Applied Analysis

Extendability of Equilibria of Nematic Polymers

Hongyun Wang and Hong Zhou

Full-text: Open access

Abstract

The purpose of this paper is to study the extendability of equilibrium states of rodlike nematic polymers with the Maier-Saupe intermolecular potential. We formulate equilibrium states as solutions of a nonlinear system and calculate the determinant of the Jacobian matrix of the nonlinear system. It is found that the Jacobian matrix is nonsingular everywhere except at two equilibrium states. These two special equilibrium states correspond to two points in the phase diagram. One point is the folding point where the stable prolate branch folds into the unstable prolate branch; the other point is the intersection point of the nematic branch and the isotropic branch where the unstable prolate state becomes the unstable oblate state. Our result establishes the existence and uniqueness of equilibrium states in the presence of small perturbations away from these two special equilibrium states.

Article information

Source
Abstr. Appl. Anal., Volume 2008 (2008), Article ID 854725, 10 pages.

Dates
First available in Project Euclid: 10 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1234298997

Digital Object Identifier
doi:10.1155/2008/854725

Mathematical Reviews number (MathSciNet)
MR2457057

Zentralblatt MATH identifier
1160.82371

Citation

Wang, Hongyun; Zhou, Hong. Extendability of Equilibria of Nematic Polymers. Abstr. Appl. Anal. 2008 (2008), Article ID 854725, 10 pages. doi:10.1155/2008/854725. https://projecteuclid.org/euclid.aaa/1234298997


Export citation

References

  • B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, vol. 1, John Wiley & Sons, New York, NY, USA, 1987.
  • A. M. Donald, A. H. Windle, and S. Hanna, Liquid Crystalline Polymers, Cambridge University Press, Cambridge, UK, 2nd edition, 2006.
  • S. Hess and M. Kröger, ``Regular and chaotic orientational and rheological behaviour of liquid crystals,'' Journal of Physics: Condensed Matter, vol. 16, no. 38, pp. S3835--S3859, 2004.
  • A. D. Rey and M. M. Denn, ``Dynamical phenomena in liquid-crystalline materials,'' in Annual Review of Fluid Mechanics, vol. 34 of Annual Review of Fluid Mechanics, pp. 233--266, Annual Reviews, Palo Alto, Calif, USA, 2002.
  • M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, UK, 1986.
  • P. Constantin, I. G. Kevrekidis, and E. S. Titi, ``Asymptotic states of a Smoluchowski equation,'' Archive for Rational Mechanics and Analysis, vol. 174, no. 3, pp. 365--384, 2004.
  • P. Constantin, I. Kevrekidis, and E. S. Titi, ``Remarks on a Smoluchowski equation,'' Discrete and Continuous Dynamical Systems. Series A, vol. 11, no. 1, pp. 101--112, 2004.
  • P. Constantin and J. Vukadinovic, ``Note on the number of steady states for a two-dimensional Smoluchowski equation,'' Nonlinearity, vol. 18, no. 1, pp. 441--443, 2005.
  • I. Fatkullin and V. Slastikov, ``Critical points of the Onsager functional on a sphere,'' Nonlinearity, vol. 18, no. 6, pp. 2565--2580, 2005.
  • M. G. Forest, R. Zhou, and Q. Wang, ``Symmetries of the Doi kinetic theory for nematic polymers of arbitrary aspect ratio: at rest and in linear flows,'' Physical Review E, vol. 66, no. 3, Article ID 031712, 9 pages, 2002.
  • M. G. Forest, Q. Wang, and R. Zhou, ``The flow-phase diagram of Doi-Hess theory for sheared nematic polymers II: finite shear rates,'' Rheologica Acta, vol. 44, no. 1, pp. 80--93, 2004.
  • M. G. Forest, Q. Wang, and R. Zhou, ``The weak shear kinetic phase diagram for nematic polymers,'' Rheologica Acta, vol. 43, no. 1, pp. 17--37, 2004.
  • M. G. Forest, R. Zhou, and Q. Wang, ``Chaotic boundaries of nematic polymers in mixed shear and extensional flows,'' Physical Review Letters, vol. 93, no. 8, Article ID 088301, 4 pages, 2004.
  • R. Zhou, M. G. Forest, and Q. Wang, ``Kinetic structure simulations of nematic polymers in plane Couette cells---I: the algorithm and benchmarks,'' Multiscale Modeling & Simulation, vol. 3, no. 4, pp. 853--870, 2005.
  • M. G. Forest, R. Zhou, and Q. Wang, ``Scaling behavior of kinetic orientational distributions for dilute nematic polymers in weak shear,'' Journal of Non-Newtonian Fluid Mechanics, vol. 116, no. 2-3, pp. 183--204, 2004.
  • M. G. Forest and Q. Wang, ``Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows,'' Rheologica Acta, vol. 42, no. 1-2, pp. 20--46, 2003.
  • G. Ji, Q. Wang, P. Zhang, and H. Zhou, ``Study of phase transition in homogeneous, rigid extended nematics and magnetic suspensions using an order-reduction method,'' Physics of Fluid, vol. 18, no. 12, Article ID 123103, 17 pages, 2006.
  • H. Liu, H. Zhang, and P. Zhang, ``Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential,'' Communications in Mathematical Sciences, vol. 3, no. 2, pp. 201--218, 2005.
  • C. Luo, H. Zhang, and P. Zhang, ``The structure of equilibrium solutions of the one-dimensional Doi equation,'' Nonlinearity, vol. 18, no. 1, pp. 379--389, 2005.
  • H. Zhou, H. Wang, M. G. Forest, and Q. Wang, ``A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation,'' Nonlinearity, vol. 18, no. 6, pp. 2815--2825, 2005.
  • H. Zhou, H. Wang, Q. Wang, and M. G. Forest, ``Characterization of stable kinetic equilibria of rigid, dipolar rod ensembles for coupled dipole-dipole and Maier-Saupe potentials,'' Nonlinearity, vol. 20, no. 2, pp. 277--297, 2007.
  • H. Zhou, H. Wang, and Q. Wang, ``Nonparallel solutions of extended nematic polymers under an external field,'' Discrete and Continuous Dynamical Systems. Series B, vol. 7, no. 4, pp. 907--929, 2007. \endthebibliography