Abstract
Motivated by the fact that Floquet theory and averaging methods used to study the stability of linear periodic systems in continuous time, we formulate and analyze the dynamics of a nonlinear and non-autonomous system of ordinary differential equations describing the dynamics of an invasive reproductive plant: the Typha. Its two modes of reproduction namely; sexual (via seeds) and asexual (via rizhomes) are included into the hybrid system which combines the features of classical continuous time and discrete time systems. Stability of the null equilibrium is investigated via the basic reproduction rate Ro of the model in the absence of Typha is computed. For
Information
Digital Object Identifier: 10.16929/sbs/2018.100-05-01