Abstract
This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/or posterior analysis of certain Gaussian signal-plus-noise models is examined in a more general setting. These connections allow for the application of an efficient, linear time algorithm, to estimate parameters, compute random effects predictions and evaluate likelihoods in a large class of model scenarios. We also show that the methods of generalized cross-validation, restricted maximum likelihood and unbiased risk prediction can be used to estimate the variance components or adaptively select the smoothing parameters in any of the three settings.
Information
Digital Object Identifier: 10.1214/09-LNMS5713