Abstract
Actions of $\mathbb Z^d$ by automorphisms of compact zero-dimensional groups exhibit a range of mixing behaviour. Schmidt introduced the notion of mixing shapes for these systems, and proved that non-mixing shapes can only arise non-trivially for actions on zero-dimensional groups. Masser has shown that the failure of higher-order mixing is always witnessed by non-mixing shapes. Here we show how valuations can be used to understand the (non-)mixing behaviour of a certain family of examples. The sharpest information arises for systems corresponding to tight polyhedra.
Information
Digital Object Identifier: 10.1214/074921706000000194