Open Access
VOL. 48 | 2006 Attractiveness of the Haar measure for linear cellular automata on Markov subgroups
Chapter Author(s) Alejandro Maass, Servet Martínez, Marcus Pivato, Reem Yassawi
Editor(s) Dee Denteneer, Frank den Hollander, Evgeny Verbitskiy
IMS Lecture Notes Monogr. Ser., 2006: 100-108 (2006) DOI: 10.1214/074921706000000130

Abstract

For the action of an algebraic cellular automaton on a Markov subgroup, we show that the Cesàro mean of the iterates of a Markov measure converges to the Haar measure. This is proven by using the combinatorics of the binomial coefficients on the regenerative construction of the Markov measure.

Information

Published: 1 January 2006
First available in Project Euclid: 28 November 2007

zbMATH: 1121.37017
MathSciNet: MR2306192

Digital Object Identifier: 10.1214/074921706000000130

Subjects:
Primary: 54H20‎
Secondary: 37B20

Keywords: algebraic topological Markov chain , cellular automata , Markov measures , maximal entropy measure

Rights: Copyright © 2006, Institute of Mathematical Statistics

Back to Top