Open Access
VOL. 6 | 2010 Robust generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with unknown scale
Chapter Author(s) Dominique Fourdrinier, William E. Strawderman
Editor(s) James O. Berger, T. Tony Cai, Iain M. Johnstone
Inst. Math. Stat. (IMS) Collect., 2010: 249-262 (2010) DOI: 10.1214/10-IMSCOLL617

Abstract

We consider estimation of the mean vector, θ, of a spherically symmetric distribution with unknown scale parameter σ under scaled quadratic loss. We show minimaxity of generalized Bayes estimators corresponding to priors of the form π(‖θ2)ηb where η = 1 / σ2, for π(⋅) superharmonic with a non decreasing Laplacian under conditions on b and weak moment conditions. Furthermore, these generalized Bayes estimators are independent of the underlying density and thus have the strong robustness property of being simultaneously generalized Bayes and minimax for the entire class of spherically symmetric distributions.

Information

Published: 1 January 2010
First available in Project Euclid: 26 October 2010

MathSciNet: MR2798523

Digital Object Identifier: 10.1214/10-IMSCOLL617

Subjects:
Primary: 62C10 , 62C20

Keywords: Bayes estimators , location parameter , minimax estimators , quadratic loss , scale parameter , spherically symmetric distributions , superharmonic priors

Rights: Copyright © 2010, Institute of Mathematical Statistics

Back to Top