Tohoku Mathematical Journal

Index formula for MacPherson cycles of affine algebraic varieties

Jörg Schürmann and Mihai Tibăr

Full-text: Open access

Abstract

We give explicit MacPherson cycles for the Chern-MacPherson class of a closed affine algebraic variety $X$ and for any constructible function $\alpha$ with respect to a complex algebraic Whitney stratification of $X$.

We define generalized degrees of the global polar varieties and of the MacPherson cycles and we prove a global index formula for the Euler characteristic of $\alpha$. Whenever $\alpha$ is the Euler obstruction of $X$, this index formula specializes to the Seade-Tibăr-Verjovsky global counterpart of the Lê-Teissier formula for the local Euler obstruction.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 1 (2010), 29-44.

Dates
First available in Project Euclid: 31 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1270041025

Digital Object Identifier
doi:10.2748/tmj/1270041025

Mathematical Reviews number (MathSciNet)
MR2654301

Zentralblatt MATH identifier
1187.14013

Subjects
Primary: 14C25: Algebraic cycles
Secondary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15] 14R25: Affine fibrations [See also 14D06] 32S60: Stratifications; constructible sheaves; intersection cohomology [See also 58Kxx] 14D06: Fibrations, degenerations 32S20: Global theory of singularities; cohomological properties [See also 14E15]

Keywords
Characteristic classes constructible function affine polar varieties Euler obstruction index theorem characteristic cycles stratified Morse theory

Citation

Schürmann, Jörg; Tibăr, Mihai. Index formula for MacPherson cycles of affine algebraic varieties. Tohoku Math. J. (2) 62 (2010), no. 1, 29--44. doi:10.2748/tmj/1270041025. https://projecteuclid.org/euclid.tmj/1270041025


Export citation

References

  • J. L. Brylinski, A. Dubson and M. Kashiwara, Formule d'indice pour les modules holonomes et obstruction d'Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 573--576.
  • D. Burghelea and A. Verona, Local homological properties of analytic sets, Manuscripta Math. 7 (1972), 55--66.
  • A. Dubson, Formule pour l'indice des complexes constructibles et des modules holonomes, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 113--116.
  • W. Fulton, Intersection theory, Springer Verlag, 1984.
  • V. Ginsburg, Characteristic cycles and vanishing cycles, Invent. Math. 84 (1986), 327--402.
  • M. Goresky and R. MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. (3) 14, Berlin, Springer-Verlag, 1988.
  • H. Hamm, Lefschetz theorems for singular varieties, Part I (Arcata, Calif., 1981), 547--557, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, R. I., 1983.
  • J. Harris, Algebraic geometry, A First Course, Grad. Texts in Math. 133, Springer-Verlag, New-York, 1992.
  • J.-P. Henry and M. Merle, Limites de normales, conditions de Whitney et éclatement d'Hironaka, Singularities, Part 1 (Arcata, Calif., 1981), 575--584, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, RI, 1983.
  • G. Kennedy, MacPherson's Chern classes of singular varieties, Comm. Algebra. 9 (1990), 2821--2839.
  • S. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287--297.
  • D. T. Lê, Some remarks on the relative monodromy, in: Real and complex singularities (Oslo, 1976), 397--403, Sijhoff en Norhoff, Alphen a.d. Rijn, 1977.
  • D. T. Lê, Complex analytic functions with isolated singularities, J. Algebraic Geom. 1 (1992), 83--100.
  • D. T. Lê and B. Teissier, Variétés polaires locales et classes de Chern des variétés singulieres, Ann. of Math. 114 (1981), 457--491.
  • R. MacPherson, Chern classes for singular varieties, Ann. of Math. 100 (1974), 423--432.
  • D. B. Massey, Numerical invariants of perverse sheaves, Duke Math. J. 73 (1994), 307--369.
  • M. Merle, Variétés polaires, stratifications de Whitney et classes de Chern des espaces analytiques complexes, Bourbaki Seminar, vol. 1982/83, 65--78, Astérisque 105--106, Soc. Math. France, Paris, 1983.
  • R. Piene, Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4) 11 (1978), 247--276.
  • R. Piene, Cycles polaires et classes de Chern pour les variétés projectives singulières, Introduction à la théorie des singularités, II, 7--34, Travaux en cours 37, Hermann, Paris, 1988.
  • C. Sabbah, Quelques remarques sur la géométrie des espaces conormaux, in: Differential systems and singularities (Luminy, 1983), Astérisque No. 130 (1985), 161--192.
  • J. Schürmann, Topology of singular spaces and constructible sheaves, Mathematics Institute of the Polish Academy of Sciences, Mathematical Monographs (New Series), 63, Birkhäuser Verlag, Basel, 2003.
  • J. Schürmann, A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz-MacPherson classes, math.AG/0202175.
  • J. Schürmann, Lecture on characteristic classes of constructible functions, Trends Math., Topics in cohomological studies of algebraic varieties (Ed. P. Pragacz), 175--201, Birkhäuser, Basel, 2005.
  • J. Seade, M. Tibăr and A. Verjovsky, Global Euler obstruction and polar invariants, Math. Ann. 333 (2005), 393--403.
  • B. Teissier, Variétés polaires, II, Multiplicit és polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981), 314--491, Lecture Notes in Math. 961, Springer, Berlin, 1982.
  • M. Tibăr, Asymptotic equisingularity and topology of complex hypersurfaces, Internat. Math. Res. Notices (1998), 979--990.
  • M. Tibăr, Duality of Euler data for affine varieties, Singularities in geometry and topology 2004, 251--257. Adv. Stud. Pure Math. 46, Math. Soc. Japan, Tokyo, 2007.