Pacific Journal of Mathematics

A class of primality tests for trinomials which includes the Lucas-Lehmer test.

H. C. Williams

Article information

Source
Pacific J. Math., Volume 98, Number 2 (1982), 477-494.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102734270

Mathematical Reviews number (MathSciNet)
MR650024

Zentralblatt MATH identifier
0482.10007

Subjects
Primary: 10A25

Citation

Williams, H. C. A class of primality tests for trinomials which includes the Lucas-Lehmer test. Pacific J. Math. 98 (1982), no. 2, 477--494. https://projecteuclid.org/euclid.pjm/1102734270


Export citation

References

  • [1] R. D. Carmichael, On the numerical factors of the arithmetic forms an n, Ann. of Math., (2) 15 (1913-14), 30-70.
  • [2] P. Chowla, On a theorem of Kummer, J. Number Theory, 2 (1970), 56-57.
  • [3] L. E. Dickson, Cyclotomy and trinomialcongruences, Trans. Amer. Math. Soc, 37 (1935), 363-380.
  • [4] L. E. Dickson,Cyclotomy, higher congruences, and Waring'sproblem, Amer. J. Math., 57 (1935), 391-424.
  • [5] K. Inkeri, Tests for primality, Ann. Acad. Sci. Fenn. Ser. AI, No. 279, (1960), 19 pp.
  • [6] K. Ireland and M. Rosen, Elements of Number Theory, Bogden and Quiggley, Tar- rytown, New York, 1972.
  • [7] E. Kummer, Papers, vol. 1, edited by A. Weil, New York, Springer, 1975.
  • [8] E. Landau, Vorlesungen uber Zahlentheorie,vol. 3, Chelsea, New York, 1947. (Originally published in 1927).
  • [9] D. H. Lehmer, Tests for primality by the converse of Fermat's theorem, Bull. Amer. Math. Soc, 33 (1927), 327-340.
  • [10] D. H. Lehmer, An extended theory of Lucas' functions,Ann. of Math., (2) 31 (1930), 419-448.
  • [11] H. Riesel, A note on the prime numbers of the form N -- (6 + l)22w --1 and M-- (6 - 1)22% - 1, Ark. Mat., 3 (1956), 245-253.
  • [12] H. Riesel, Lucasian criteria for the primality of N = h 2n -- 1, Math. Comp., 23 (1969), 869-875.
  • [13] D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd edition, Chelsea, New York, 1978.
  • [14] S. B. Stechkin, Lucas's criterion for the primalityof numbers of the form N = h2n - 1, Math. Notes, 1O (1971), 578-584. (Translation of Mat. Zametki).
  • [15] H. C. Williams, An algorithm for determiningcertain large primes, Congressus Numerantium III, Proc. of the second Louisiana Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg, 1971, 533-566.
  • [16] H. C. Williams, The primality of N = 2A3n - 1, Canad. Bull., 15 (1972), 585-589.
  • [17] H. C. Williams,Primalitytesting on a computer, Ars Combinatoria, 5 (1978), 127-185.
  • [18] H. C. Williams, The primality of certain integers of the form 2Arn -- 1, Acta Arith. To appear.